

DOMINANCE: Drone Mine Obstacle Avoidance
ECE Senior Design 2 Spring 2020
Group 18

Caleb Jones (CpE)
Hamza Siddiqui (CpE)
Rishi Jain (EE)
Ryan Lucas (EE)

Sponsored By Lockheed Martin

 i

Table of Contents
1.0 Executive Summary (RL) 1	
2.0 Project Description 2	

2.1 Project Goals and Objectives 2	
2.2 Project Motivations (RL) 6	
2.3 Project Operation (CJ) 6	

2.3.1 Hardware Setup (CJ) 7	
2.3.2 Ground Control Station Setup (HS) 7	
2.3.3 Drone Power-up Sequence (CJ) 7	
2.3.4 Autonomous Mode Operation (CJ) 7	
2.3.5 Manual Mode Operation (CJ) 8	
2.3.6 Shutdown (CJ) 8	
2.3.7 Diagnosing and Resolving Operational Issues (RJ) 8	

2.4 Requirements Specification (CJ) 9	
2.5 House of Quality (RJ) 11	

3.0 Project Research 13	
3.1 Similar Projects 13	

3.1.1 Nvidia Trail Drone (CJ) 13	
3.1.2 MicLoc Sound Detection (HS) 15	

3.2 Relevant Technologies 16	
3.2.1 Image Recognition Methods (HS) 16	

3.2.1.1 Image Classification (HS) 17	
3.2.1.2 Object Localization (HS) 17	
3.2.1.3 Histogram Back Projection (HS) 17	
3.2.1.4 MeanShift Algorithm (HS) 18	
3.2.1.5 CAMshift Algorithm (HS) 19	
3.2.1.6 Grabcut Algorithm (HS) 20	
3.2.1.7 Convolutional Neural Network (HS) 20	
3.2.1.8 Linear Regression (HS) 21	
3.2.1.9 Object Detection (HS) 21	
3.2.1.10 Instance Segmentation (HS) 22	

3.2.2 Computer Vision Libraries (HS) 22	
3.2.3 Object Detection Models (CJ) 24	

3.2.3.1 CenterNet 24	

 ii

3.2.3.2 RetinaNet 24	
3.2.3.3 Single Shot Detector (SSD) 24	
3.2.3.4 Model Decision 25	
3.2.3.5 Model Training 25	

3.2.4 Sound Detection Methods (HS) 26	
3.2.4.1 Microphone Triangulation 26	
3.2.4.2 Sound and Noise Filtering (HS) 27	
3.2.4.3 Noise Filtering Hardware Approach (HS) 27	
3.2.4.4 Noise Filtering Software Approach (HS) 28	

3.2.4 Flight Controller Software (RJ) 29	
3.3 Parts Selection 30	

3.3.1 Computer (CJ) 30	
3.3.1.1 Computer Requirements 30	
3.3.1.2 Raspberry Pi 4 Model B 30	
3.3.1.3 Jetson Nano Development Kit 30	
3.3.1.4 Comparison & Selection 31	

3.3.2 Flight Controller (RJ) 32	
3.3.2.1 Flight Controller Requirements 32	
3.3.2.2 Parts Comparison and Selection 33	

3.3.3 Camera (CJ) 34	
3.3.3.1 Camera Requirements 34	
3.3.3.2 Single Camera 34	
3.3.3.3 Double Cameras (Stereo Vision) 35	
3.3.3.4 Depth Cameras 35	
3.3.3.5 Method Comparison and Selection 36	
3.3.3.6 Part Comparison and Selection 37	

3.3.4 Microphones (HS) 38	
3.3.4.1 Seeed’s ReSpeaker Mic Array v2.0 38	
3.3.3.2 Seeed’s ReSpeaker 2-Mics Pi 39	
3.3.3.3 Seeed’s ReSpeaker 4-Mic 39	
3.3.3.4 Part Comparison and Selection 39	

3.3.5 Batteries (RL) 40	
3.3.6 Motors (RL) 41	
3.3.7 Wireless Communication (HS) 42	

 iii

3.3.7.1 Router 42	
3.3.7.2 Wi-Fi Transmitter 42	
3.3.7.3 Telemetry Radio 42	

3.3.8 Optical Flow Camera (CJ) 43	
3.3.8.1 Purpose 43	
3.3.8.2 PX4FLOW 43	
3.3.8.3 Hereflow Optical Flow/Lidar 44	

3.3.9 Time of Flight Distance Sensors 44	
3.3.9.1 Purpose (CJ) 44	
3.3.9.2 HC-SR04 Ultrasonic Range Sensor (HS, CJ) 45	
3.3.9.3 HRLV-MaxSonar EZ4 on the PX4FLOW (CJ) 45	
3.3.9.4 TeraRanger One (CJ) 45	
3.3.9.5 TF Mini LiDAR (HS, CJ) 45	
3.3.9.6 Part Comparison and Selection (CJ) 46	

3.3.10 Drone Starter Kit (RJ) 47	
3.3.11 Part Selection Summary 50	

3.4 Possible Architectures and Related Diagrams (RL,RJ) 51	
3.4.1 Emergency Stop (RL) 52	
3.4.2 Data Flow (RL) 53	
3.4.3 Obstacle Recognition and Maneuvering Sequence (RL) 53	
3.4.4 Power Distribution (RL) 54	
3.4.5 Acoustic Waypoint (RL) 55	
3.4.6 Component Connection (RL) 56	

4.0 Related Standards, Regulations, & Realistic Design Constraints (RL) 57	
4.1 Standards (RL) 57	

4.1.1 Dimensional Standards (RL) 57	
4.1.2 Coding/Programming Standards (RL and HS) 57	
4.1.3 Video resolution standard (RL) 59	
4.1.4 IEEE Standards (RL) 59	
4.1.5 UL 3030 – Standard for Safer Flights (RL) 59	
4.1.6 IPC PCB Standards (RL) 60	
4.1.7 IEC60950 (Relevant Power Supply Standards) (HS) 62	

4.2 Drone Regulations (CJ) 63	
4.3 Realistic Design Constraints (RL) 64	

 iv

4.3.1 Economic Constraints (RL and RJ) 64	
4.3.2 Time Constraints (RL and RJ) 65	
4.3.3 Environmental, Social, and Political constraints (RL and RJ) 66	
4.3.4 Ethical, Health, and Safety Constraints (RL and RJ) 67	
4.3.5 Manufacturability and Sustainability Constraints (RL and RJ) 69	

5.0 Project Hardware Design Details 70	
5.1 Initial Design Architecture (HS) 70	

5.1.1 Power System (RJ) 71	
5.1.2 Wireless Communication System 74	
5.1.3 Interfacing with Sensors (CJ) 75	

5.1.3.1 USB 75	
5.1.3.2 UART 75	
5.1.3.3 I2C 75	

5.1.4 Microcontroller Architecture (RJ) 75	
5.1.5 Nano-PixHawk Interface (CJ) 77	

5.2 Subsystems (RL) 78	
6.0 Project Software Design Details 82	

6.1 Drone Software 82	
6.1.1 Drone Software Overview (CJ) 82	
6.1.2 Drone Computer OS and Framework (CJ) 83	

6.1.2.1 Drone Computer OS 83	
6.1.2.2 Robotic Operating System (ROS) Framework 83	

6.1.3 Drone Software Nodes (CJ) 84	
6.1.3.1 Camera Node 84	
6.1.3.2 RetinaNet 84	
6.1.3.3 Distance Estimation 85	

6.1.3.3.1 Node Design & Operation 85	
6.1.3.4 Height Sensor Node 86	
6.1.3.5 Microphone Node 86	
6.1.3.6 Drone Controller 86	

6.1.3.6.1 Autonomous Control Modes 86	
6.1.3.6.2 Manual Control Mode 90	

6.1.3.7 Simultaneous Localization and Mapping 91	
6.1.3.8 MAVROS 91	

 v

6.2 Ground Control Station Software (HS) 91	
6.3 Software: Interference and Failure Modes (RJ) 93	

6.3.1 Unidentified Object Mode 93	
6.3.2 Flight Recovery Mode 94	
6.3.3 Mine Avoidance Mode 94	
6.3.4 Object Proximity Mode 95	

6.4 Microcontroller Software (RJ) 95	
7.0 Project Construction and Coding 96	

7.1 Hardware Construction 96	
7.1.1 Needed Equipment and Building Space (RJ) 96	
7.1.2 Hardware Calibration and Configuration 96	

7.1.2.1 Electronic Speed Controllers (ESCs) (RJ) 96	
7.1.2.2 Depth Camera Calibration (CJ) 97	
7.1.2.3 PX4FLOW Calibration (HS) 97	
7.1.2.4 PixHawk Calibration and Configuration (RJ) 97	

7.1.3 Phase I (RJ) 97	
7.1.4 Phase II (RJ) 98	
7.1.5 Phase III (RJ) 99	

7.2 Software Development 99	
7.2.1 Language Choice (CJ) 99	

7.3 Development Methodology 100	
8.0 Project Prototype Testing Plan (RL) 101	

8.1 Hardware Testing (RL) 101	
8.1.1 Hardware Test Environment 102	

8.2 Hardware Specific Testing (RL) 105	
8.2.1 Lithium Polymer Battery Testing (RL) 105	
8.2.2 Printed Circuit Board (RL and RJ) 106	
8.2.3 Jetson Nano and component pairing (RL) 106	
8.2.4 Flight controller and electronic speed controller (ESC) (RL) 108	

8.3 Drone Software Testing (CJ) 108	
8.3.1 Unit Testing Nodes 108	
8.3.2 Software-in-the-Loop Testing 109	
8.3.3 Input Sensor Interface Testing 109	
8.3.4 Hardware-In-the-Loop Testing 109	

 vi

8.4 Wireless Testing (HS) 110	
8.5 Ground Station Manual Control Testing (HS) 111	
8.6 System Connectivity Prototype (HS) 112	
8.7 Sound Triangulation Prototypes (HS) 113	
8.8 Sound Channel Prototype (HS) 114	
8.9 Reliability and Performance Testing (RJ) 115	
8.10 Adversarial Mine Avoidance Hardware (HS) 115	

8.10.1 Propeller Shrouds 116	
8.10.2 Safety Mesh 117	

9.0 Administrative Content (RJ) 118	
9.1 Deliverables 118	
9.2 Milestone Discussion 119	
9.3 Initial Budget and Finance Discussion 121	
9.4 Advisors, Meetings, and Communications 123	
9.5 Parts Acquisition 123	

10.0 Project Results, Major Changes, and Future Considerations 124	
10.1 Hardware 124	

10.1.1 Drone Frame 124	
10.1.2 Optical Flow/Height Sensor 124	
10.1.3 Microcontroller/PCB 124	
10.1.4 Power Distribution 125	
10.1.5 Electronic Speed Controllers 125	

10.2 Software 125	
10.3 Overall Drone Functionality 126	
10.3 Final Cost 126	

11.0 Summary 128	
12.0 Appendices A	

12.1 Bibliography A	
12.2 Copyright Permissions C	

 1

1.0 Executive Summary (RL)
Drones have been adapted to serve many purposes and functions. Law
enforcement and other government agencies use drones for a variety of
purposes such as surveillance, traffic monitoring, and search and rescue.
However, drones are used in all types of industries. Drones have also been
made into a consumer hobby item and even toys for children, where the drones
are equipped with a camera and can be utilized to create personal videos, or just
simply hobby flying. [1]

With many different advancements in drone technology, autonomous drones
have become increasingly popular for programmed scanning and surveying of
areas for various purposes, especially due to lower costs and ease of use. An
autonomous drone may be used for scanning forests, exploring regions of caves
that may be difficult for explorers to reach, and other similar scanning purposes.
It becomes particularly important if environmental and ecological conditions tend
to interfere with radio, Bluetooth, WiFi, and other forms of remote signals. Using
such drones also help reduce safety risks and lower costs in operations. [25]

This project involved designing, building, and demonstration of an aerial vehicle
that will be fully autonomous. The drone is a quadcopter and is capable of
detecting obstacles and identify what the obstacle is (ring, single pylon, or double
pylon). The drone was designed to perform certain pre-programmed tasks after
identifying the obstacles, and use the layout of the obstacle’s locations to route a
path as it will not be equipped with any form of GPS navigation system. It was
also planned to be able to withstand or avoid any ground-bases obstacles and
interferences created by the “mine” team as it navigates through the obstacle
course. As such, the drone will also need to be sturdy to some extent.

The size of the drone was limited to certain dimensions based on the customer’s
requirements. The drone is able to detect acoustic sound waves that can mark
waypoints for it to land for a brief moment and takeoff again. It is also equipped
with an emergency shutdown protocol which will turn off power and cause the
drone to land in the event of a safety concern.

The drone communicates with a remote computer via WiFi and radio telemetry,
and send data such as the type of object detected and its respective distance
and level of confidence, route data, and other relevant data as required by the
client. It able be able to operated for a flight duration of at least 7.7 minutes. The
drone is able to keep a log of the entire flight path including the starting point,
and be able to return to its starting point once all required obstacles have been
detected and cleared. Two runs were planned to be conducted; the first run
without the mines set by the “mine” team, and the second run with the mines set
somewhere amongst the obstacles or the flight path.

 2

The success of this project originally depended on the drone’s ability to
successfully detect and maneuver around all obstacles as instructed through its
programming, and to accumulate points. The team that completes the course
with the highest accumulated points was slated to the competition. However, with
the lockdown and the “stay at home” order due to the COVID-19 pandemic in
effect, the team was required to achieve autonomous flight and successfully
maneuver through a ring and a pylon, and then autonomously land. The drone
was no longer required to be able to autonomously evade a “mine” attack, land
near a waypoint, or successfully perform an E-Stop procedure.

2.0 Project Description
The following sections under the project description provide details of the general
project concepts, the project’s goals and objectives, the different uses of
autonomous drones, and the project requirement specifications. This section also
includes a House Of Quality figure that weighs the engineering tradeoffs between
different design decisions.

2.1 Project Goals and Objectives
The team was tasked to create an autonomous drone with the goal of being fully
self-driven. A total of three teams were to compete to design and create their
own version of an autonomous drone which will be programmed to detect various
obstacles placed throughout the course at Lockheed Martin’s drone testing
facility.

Points were to be disbursed based on the successful maneuvering of each
obstacle, along with multipliers for each consecutive obstacle detected and
maneuvered around as per required by the clients/customers. Judges were to be
appointed to observe and make decisions on points disbursement based on the
performance and accuracy of proper execution of each obstacle avoidance.

An unknown number of acoustic waypoints were to be located at random
locations throughout the course where the drone will be able to detect the
acoustic signal and identify the waypoints to land and takeoff again and continue
with the course. There was also a team (the mine team) whose sole goal is to
create mines to take down the drones, so the drones were to be programmed to
detect approaching dangers and make attempts to avoid the mines.

Three different types of obstacles were planned to be placed throughout the
course which are rings, single pylons, and double pylons. The obstacle course
design and layout, along with the number of each type of obstacles and
waypoints, was to remain unknown, and will only be revealed on the day of the
competition. Our primary motivation during the competition is to maximize the
points earned. The point breakdown is listed below in Table 1.

 3

Table 1: Obstacle Navigation Values

Obstacle Points

Ring 1

Single Pylon 2

Double Pylon 3

Acoustic Waypoint 4

This project is a sponsored project, as such, all designs and programming codes
for the drone were to be executed with the requirements of the customers in
mind. Two advisors from the sponsoring company has been assigned to overlook
and provide guidance on the progress of the project. This project was an
interdisciplinary project with each team typically comprising of two electrical
engineering, two computer engineering, two mechanical, and two aerospace
engineering students. The purpose of this senior design project was to challenge
the students to utilize all the knowledge and experience gained from classes
taken throughout the years spent in college and applying it to a practical
scenario.

The main focus for the electrical and computer engineering (ECE) students of the
team was to design and implement a system that will enable the drone to detect
an obstacle, identify the type of obstacle detected, access the maneuvering
sequence for the particular type of obstacle detected, and execute the
programmed set of instructions to continue and complete the course. The team
also designed and create a printed circuit board (PCB) to to manage laterally
mounted ultrasonic range sensors.

The central processing unit (CPU) was to manage horizontal distance sensor
data, propellers, flight controller, cameras, microphones, and sensors. The ECE
team was to incorporate the appropriate algorithm to enable the various
components to communicate with each other. We also sent the data collected
from the cameras, microphones, sensors to the remote computer via WiFi to be
recorded and viewed. Our team was also responsible for implementing a flight
path log to enable the drone to return to the starting point once it has completed
the course.

The drone will be quadcopter with four motorized propellers. We built our own
frame for our final project, and though we planned on utilizing a kit for
prototyping, our team developed in houses prototypes as well. This decision was
unanimous since the option was available, and would indefinitely same time and
effort, especially due to time and funding constraints. We considered creating a

 4

mesh to protect the drone from mine attacks, but dropped this idea this plan due
to the time constraints and reduction of requirements.

A camera with depth perception was used to determine the distance of any
detected obstacles. Computer vision software was utilized to detect and navigate
to the obstacles. Moreover, microphones was to be used to detect acoustic
waypoints and communicated with the onboard CPU to instruct the drone to land
and takeoff again.

Our team attempted to create a small, portable drone that can autonomously
track and detect obstacles, navigate towards them, and maneuver around them.
After maneuvering, the drone was to search for the next obstacle within its field
of vision and repeat the same process until it reaches the end of the obstacle
course. All navigation and maneuvering must be done without the use of GPS
navigation. The drone must also be able to detect acoustic waypoints and land in
front of them before continuing on. Additionally, the drone must have the ability to
identify, approach, and navigate around the obstacles regardless of their
orientation or location. The obstacles in the course include pylons and rings as
shown in Figure 1.

Figure 1: Lockheed Martin IRIS Drone Lab with Pylons and Rings, image

referenced from Lockheed Martin DOMINANCE Kick-Off slides

The drone has several operational modes available for use. Auto Navigation will
be used to detect, approach, and autonomously navigate around objects. Auto-
maneuver will be used to perform specific autonomous actions around identified
objects. Manual mode will be used in the event that the previous two modes fail
to work correctly during demonstration. E-Stop will be used in emergency
situations where in which the drone fails to operate correctly and cannot be
controlled manually. Lastly, Take-off/Land mode will be used to start and end the
drone’s mission. In order to ensure that the drone can successfully perform its

 5

desired mission, it was to have the power to sustain flight and it’s onboard
components for at least 10 minutes.

Several key components to implementing these features include a camera to
detect objects, a sonar sensor to detect proximity, and a microphone to detect
acoustic signals. The video feed from the drone was to be broadcasted back to
the computer where a red ‘X’ will overlay the identified object as seen in Figure 2.
In addition to identifying the object, the drone’s identification confidence level,
distance to the object, and the drone’s estimated arrival time to an object will be
displayed for the end user to see. The drone’s communication with the host
computer will allow the user to test and control the drone manually, if needed.
This channel of communication will be done wirelessly, either through WiFi or
radio telemetry.

Figure 2: Symbology Example Metadata box and Red X for Target Identification,

image referenced from Lockheed Martin DOMINANCE Kick-Off slides

In addition to navigating obstacles, one other team’s objective to create a set of
adversarial “mines” to disrupt our drone’s ability to navigate the course. These
mines were designed to track our drone’s position and attempt to knock our
drone off course using projectiles. In addition to launching projectiles, the mines
may use other techniques to try to impede the ability of the drones to navigate.
These mines were to be placed throughout the course in unannounced locations,
and our objective is to ensure our drone is sturdy and adaptable enough to avoid
or withstand any attacks from these mines, allowing us to complete the obstacle
course. However due to the COVID19 pandemic, the competition was dropped.

Our drone was to be assessed on its ability to navigate to and around obstacles
in the course. Moreover, the performance of our drone was to be compared to
the drone’s of other teams with the same objectives during two rounds. The first
round will only involve navigating around identified obstacles as required, while
the second round will include the adversarial mines. Each team was to receive
points for being able to successfully complete the course during the two rounds.
An inoperative video data feed or uncontrolled UAVs was to result in forfeiture of
the round. These requirements were to be accomplished initially, before the
COVID-19 pandemic occurrence. With the new requirements for the teams, the

 6

project will now be assessed on the team’s ability to achieve autonomous flight,
successfully navigate a ring and a pylon, and then autonomously land. The
competition for the project was cancelled, and point accumulation will no longer
be necessary.

2.2 Project Motivations (RL)
The motivation for this project entails several applications, each with its unique
beneficial properties. From a military perspective, an autonomous drone may be
used for reconnaissance or area scouting. This property can be particularly
useful in saving the lives of troops. Autonomous drones can also be useful in
exploration applications such as surveying a forest region, or a cave or tunnel
system. This property is particularly useful as it is very cost effective, at the same
time, reduces the risk of safety concerns in the form of unforeseen injury
prevention (in the case of unexplored territories).

Aside from the practical applications of an autonomous drone, the project in
general involved working with people with diverse backgrounds, each bringing
their own set of skills and expertise to make the project successful. This type of
project environment is quite common in the real world, and being able to work
with a team becomes crucial and often challenging at times. In many ways, this
project acts as a form of preparation of what to expect when entering a career
path. Growth is an essential factor in any career path, and is particularly
important in the case of an engineer. This project emphasized the importance of
good communication and collaboration between colleagues to reach a common
goal. If a team is not able to communicate between members, any project they
may be working on will most likely not succeed.

This project required the knowledge and skills of electrical engineering, computer
engineering, mechanical engineering, aerospace engineering, and computer
science students. However, in the case of our group, since the group lacks
students in the computer science field, all coding and programming
responsibilities will be handled by the computer engineering students. In other
words, the desire to successfully complete the project and execute the expected
results of the customers, the team was required to work in unity. The mechanical
and aerospace engineering students worked on the frame of the drone, along
with the motors and propellers, flight controller, electronic speed controller (ESC)
of the drone. The electrical and computer engineering students worked on all the
electrical and communication components, as well as the coding and
programming algorithms that will utilized for all of the onboard components to
communicate and work with each other, and with the ground computer/laptop.

2.3 Project Operation (CJ)
This section details the operation of the drone from the user’s perspective. The
purpose is to help guide our design based on how we wish the users to operate

 7

the drone. This section guides a potential user on how to set up, power-up,
operate, and shutdown the drone. We also discuss what can be done during our
project demonstration to overcome possible issues.

2.3.1 Hardware Setup (CJ)
The drone does not need a large amount of assembly before operation. The
operator will only need to strap in the battery pack. The battery pack is
detachable in order to make charging the battery pack easier and to allow for
quick replacement of the battery for a fully charged one. Setting up the ground
station would require connecting a laptop that is able to run our ground station
software to the wifi access point that the drone produced. Additionally, in order to
manually fly the drone, a radio controller was connected to the computer.

2.3.2 Ground Control Station Setup (HS)
A laptop is needed to operate the drone in manual control modes. In autonomous
mode, the ground control station is used to initiate flight and display the camera
feed from the drone.

The laptop will be setup with a router, and the router will need to be turned on
and be in the range of the drone’s wifi module (within 100 feet). An operator
needs to SSH into the shell of the drone computer and run the necessary
programs to start the autonomous flight. During the flight, the drone displays the
output from the vision algorithm to the Graphical User Interface (GUI) of the
operating system of the drone computer. The ground station then receives the
the feed of the GUI of the drone computer and displays it.

2.3.3 Drone Power-up Sequence (CJ)
The drone powers up once the drone battery is connected to the rest of the drone
components. The flight controller attempts to turn on and does pre-flight checks
to ensure that the drone is ready to fly. If the drone passes all pre-flight checks,
the light on the flight controller will change to a flashing blue. If the drone fails any
pre-flight checks, the flight controller will display a different color, usually flashing
yellow. At the same time, the drone computer then turns on and starts the wifi
access point for the ground station to connect to.

2.3.4 Autonomous Mode Operation (CJ)
The drone’s Autonomous Mode can be started by running the autonomous
program from the ground control station. The drone will then carry out its
autonomous actions and land. If an safety issue occured, the drone can be sent
an E-stop command from the ground station computer. This will force the drone
to immediately stop and land.

 8

If the drone ever loses communication with the ground station for more than 5
seconds, the drone will immediately attempt to land. This will prevent the drone
from flying without being able to throw it into the E-Stop submode. If the drone
battery life ever drops below 5%, the drone will attempt to land if currently
navigating to an obstacle. This is to prevent the drone from falling out of the sky
from losing power and causing damage to the drone.

2.3.5 Manual Mode Operation (CJ)
In Manual Mode, the drone is controlled via a radio controller. In order to arm the
flight controller and enable flight, the left stick that controls altitude must be held
to the down and right. Once the light on the flight controller turns from a flashing
blue to a solid blue, then the drone is ready for flight. When no inputs are given
by the radio controller, the flight controller causes the drone to hover in place if
airborne and stay on the ground if it has not taken off.

Flight commands are sent to the flight controller via the radio controller and
receiver. To fly the drone upwards, tilt the left stick up. To fly the drone
downward, pull the left stick down. To turn the drone left, push the left stick left.
To turn the drone right, push the right stick right.To move the drone forward,
push the right stick forward. To move the drone backwards, pull the right stick
backwards. To move the drone left, move the right stick left. To move the drone
right, move the right stick right.

2.3.6 Shutdown (CJ)
Once the drone has landed and the motors are off, users should wait for the flight
controller to switch from solid blue to flashing blue. This indicates that the drone
is disarmed and safe to approach. A user can then go to the drone and unplug
the battery. All onboard systems including the flight controller and the computer
will immediately shut off.

2.3.7 Diagnosing and Resolving Operational Issues (RJ)
In the competition, we were permitted to repair the drone if necessary without
losing any points. For safety reasons, we would only attempt to repair and reset
the drone once it is on the ground. In addition to our manual ESTOP feature, the
drone is also programmed to land automatically if it experiences a
communication failure. Moreover, the drone will cease flying if it is unable to
sustain an altitude of 1 foot for at least 10 seconds.

In the event that the drone is unexpectedly on the ground in the middle of the
obstacle course, then we would know the drone experienced a communication,
power, or hardware failure. We would first check whether the drone is connected
to the ground control station. If not connected, we will attempt to reconnect
communications via the laptop. If we are unable to reconnect, we will physically
approach the drone and perform a hard reset. Once the drone is reconnected,
we will verify the power level of the battery. The drone was to be programmed to

 9

land before fully depleting the battery, allowing the drone to safely land. If the
battery is low, we will swap the battery with the spare. However, if we find that
the communication and power systems of the drone are working as expected, we
would first verify whether or not the drone was damaged. The most susceptible
components to damage are the propeller, which could crack when colliding with
an object. If the propeller is damaged, it can easily be swapped with a
replacement by unscrewing the old propeller. Before doing this, the user would
unplug the battery to ensure that the propeller doesn’t spin during the repair.

If we were to find that the drone is completely unresponsive, a hard reset will be
performed by removing the battery and powering up the drone again. We would
also reset the ground control station on the computer to ensure that all systems
have been restarted.

If all systems have been reset and there is no apparent damage to the drone,
then further diagnosis into the wiring would be required. It is possible that during
flight or in a crash, some of the components may have become loose or
unplugged. If all the wiring is found to be intact, then components will have to be
removed and individually tested to isolate the problem.

2.4 Requirements Specification (CJ)
We were given constraints by our project sponsor, Lockheed Martin, for the basic
design and implementation of our drone. However, since our drone was also be
competing in a competition, there were performance requirements that were
necessary in order to make the drone pass through obstacles in the competition.
The requirements specification will serve as a basic guideline for the designing of
the drone’s dimensional structure, as well as certain functional attributes that will
be necessary for the successful execution of the project. The following set of
tables below outlines the original requirements we considered for our drone
before disrupted by the COVID19 pandemic.

Table 2 below outlines the physical constraints that we must abide by for our
drone.

Table 2: Physical Constraints

Requirement

1 The maximum drone size shall be 1.5 ft. x 1.5 ft. x 1.5 ft.

2 The drone shall be able to fly through a 3 ft diameter ring.

3 The drone shall weigh less than 5 pounds.

The Table 3 below outlines the operational requirements for our drone.

 10

Table 3: Operational Requirements

Requirement

4 The drone shall not fly higher than 45 ft above ground level.

5 The drone shall navigate without use of GPS.

6 The drone will have 5 flight modes:
1. Auto-Navigation (AutoNav)
2. Auto-Maneuver
3. Manual
4. E-Stop
5. Take-Off/Land

7 In AutoNav flight mode, drone will detect, identify, and navigate to an obstacle

8 In Auto-Maneuver flight mode, drone will autonomously perform obstacle-specific
maneuver.

9 In Manual flight mode, autonomous functions cease, and drone controls are
transferred to human pilot.

10 In E-Stop mode, the drone stops all lateral movement and reduces the thrust of the
propellers to initiate a controlled crash landing

11 In Take-Off/Land mode, the drone shall perform a controlled take-off and/or landing.

12 The drone will be able to identify and distinguish between the following obstacles:
1. Rings
2. Single Pylons
3. Double Pylons
4. Acoustic Waypoints.

13 When the drone encounters a ring, it will fly through it.

14 When the drone encounters a single pylon, it will loop around it once.

15 When the drone encounters a double pylon, it will loop around both and then pass
between them.

16 When a drone detects an acoustic waypoint emitting a frequency between 0.5 -
1kHz, it will land in front of it for about 5 seconds before moving on.

17 The YOLO object detection algorithm cannot be used.

18 The minimum horizontal field-of-view for obstacle detection is 60°

19 Minimum flight time is 10 minutes under normal autonomous operation.

20 After drone reaches a wall approximately six feet in front, it returns to start position.

 11

The Table 4 below outlines the communication requirements for our drone.
These requirements are important to ensure the system is able to accurately
communicate with the ground station. The system also transmits various
measurement data, mapping data, and several other data types that will need to
be logged and recorded on the ground station. This data is made easily
accessible by both the user, and the drone system, as these data will be used to
track the flight path. (RL)

Table 4: Communication Requirements

Requirement

21 The drone must respond to commands sent by a transmitter within 100
feet of the drone.

22 The drone will stream video wirelessly to a ground station laptop that is
within a 100 feet radius.

23 Drone obstacles will be identified with a red “X” overlayed on the video
stream

24 A metadata box will be displayed on the computer detailing the following
information on the currently identified obstacle:

1. Type of obstacle
2. Confidence of identification
3. Distance to obstacle
4. Approximated time to arrival
5. Height Above Ground Level (HAGL)

All of the requirements mentioned above above are essential and vital to the
success of this project. The team will have to ensure all requirements are
strategically implemented into all design phases of the project. The requirements
implementation will be particularly important for the prototype designing phase as
it will allow the team to make adjustments and modifications to the design before
final implementations on the main design. (RL)

2.5 House of Quality (RJ)
For this project, we were given customers for whom the UAV must be designed
around. The customer’s expectations are a primary consideration when
designing and implementing this drone, however, many of these aspects are
directly correlated to each other. Therefore, it is important to identify the ways in
which customer requirements can be set. This was accomplished through a
House of Quality matrix. This matrix outlines the way that a customer’s
requirements can be met, and provides traceability for its implementation. This
highlights the relationship between marketing requirements and engineering

 12

requirements. Marketing requirements are the requirements largely driven by the
customer, and include some of the goals they hope to accomplish with the
product. Engineering requirements are guidelines for implementation. A
marketing requirement may affect the design choices for a product, and at the
same time, an engineering requirements may affect certain marketability aspects
of a product.

The House of Quality table below outlines the major engineering and marketing
requirements. It also shows the relationship between engineering and marketing
requirements, as well as between two engineering requirements. The up arrow
shows if there is a positive correlation, while the down arrow shows there is a
negative correlation between accomplishing the goals for both items. The double
arrow indicates that a correlation between the two items is stronger, while a
single arrow shows that they are weaker. If there is no appreciable correlation
between two items, then the box shared between the two items might be left
blank.

Moreover, the House of Quality matrix also shows the polarity on each
engineering and marketing requirement, indicating whether we seek to minimize
or maximize that attribute. The polarity briefly summarizes the targets for each
requirement, and allows us to attempt improving the design to surpass minimum
expectations. As an example, in our matrix, we show that we want to increase
maneuverability of the drone (positive polarity), though the size and weight of the
drone will apply a negative pressure on that marketing requirement. Moreover,
we have specified that the size and weight of the drone have a target engineering
requirement, in order to make sure that the technology can support what sought
to create. However, this also gives us leeway in our design to be flexible as long
as we do not cross any important thresholds.

In our analysis, we have found that the primary customer requirements included
minimizing the completion time of the build and its associated costs, while
increasing the maneuverability of the drone, effectiveness of the user interface,
accuracy of object detection, and ability to defensively avoid adversarial mines.

As seen below in Figure 3, the matrix also includes specific engineering
requirements that we must target when designing our drone. Some of the
requirements, such as the 18” x 18” x 18” size, greater than 10 min of flight time,
and less than $1100 were specifically requested by our customer and must be
met. However, other engineering requirements such as the weight,
communication range, and field of vision are discretionary and provides a great
deal of flexibility when designing the final product.

 13

Figure 3: House of Quality Matrix (HS)

3.0 Project Research
The following sections of the project research will focus on project related
products, technologies, parts selection and comparison, possible architectural
designs and diagrams, along with the parts selection summary.

3.1 Similar Projects

3.1.1 Nvidia Trail Drone (CJ)
In July of 2017, NVIDIA researchers Smolyanskiy, Kamenev, Smith, and
Birchfield published the paper Toward Low-Flying Autonomous MAV Trail
Navigation using Deep Neural Networks for Environmental Awareness [17]. This
paper details the methods they used to get a drone to navigate a course without

 14

a GPS. This was done using a combination of neural networks, a single webcam,
a Simultaneous Location And Mapping (SLAM) algorithm.

The hardware of their drone was composed of a 3DR Iris+ quadcopter with
Pixhawk hardware and autopilot, the Jetson TX1, the PX4FLOW optical flow
sensor, and a Microsoft webcam running in 720p at 30fps. Pixhawk is an open-
hardware project that provides designs for flight control hardware, and Pixhawk is
compatible with the PX4 open source flight control software that is also used on
this project. The Jetson TX1 is actually very similar to the Jetson Nano that is
described below in parts selection. Both the Jetson TX1 and the Jetson Nano
use the same CPU (Cortex-A57), and the only major difference between the two
is that the TX1 has double the number of CUDA cores in its GPU (256 cores).
The PX4FLOW sensor is designed for optical flow calculations to approximate
distance travelled and current speed.

The drone software uses the Robot Operating System (ROS) framework in order
to standardize communication between different kinds of software. The basic flow
of the program starts with the camera sending its images to three different
software groups known as nodes: the researchers’ own Deep Neural Network
(DNN) called TrailNet, the YOLO network to detect objects, and the direct sparse
odometry (DSO) SLAM algorithm.

TrailNet is a DNN designed to detect the drone’s offset from the center of the trail
and orientation with respect to the trail. The network’s orientation output was
trained with cameras pointed left off the trail, right off the trail, and center on the
trail. The offset output was trained using three cameras facing forward on the trail
with one in the center, one on the right edge, and one on the left edge. This
neural network is run using TensorRT to take better advantage of the computer’s
GPU. If we decide to go with similar NVIDIA architecture (like the Jetson Nano)
then we will want to implement our vision algorithms using TensorRT.

YOLO was used to detect obstacles such as other hikers and pets in order to
avoid them. In a similar manner, we intend to use an algorithm similar to YOLO in
order to identify objects, but will instead navigate our drone towards them rather
than away from them. The YOLO algorithm was also implemented using
TensorRT like TrailNet to improve its performance.

The DSO SLAM algorithm is used in conjunction with location information from
the PX4FLOW to create a 3D point map of obstacles along the trail. This is done
to ensure that the drone does not encounter any obstacles that may be located
near the middle of the trail. This method was considered by us for our drone as a
method to determining distance away from obstacles and for navigating around
them.

The output from each of these modes are then fed into the controller node that
determines the necessary action to take and sends it to the MAVROS node that

 15

manages the Pixhawk directly. Additional input from a joystick is also used in
order to control the drone manually and to create disruptions for testing
purposes.

From this study, we found several technologies that we found useful in our own
project. The ROS was a useful tool in implementing communication between
different sections of our code. We thought that MAVROS could be used to enable
easier communication between the computer and our flight controller. However,
we found the MAVROS commands to be somewhat difficult to use. Additionally,
we found that TensorRT greatly improved the performance of our object
detection model on our computer.

3.1.2 MicLoc Sound Detection (HS)
MicLoc is an open-source project documented by author kryptor from the blog
rural hacker. MicLoc uses sound triangulation to pinpoint an incoming sound in
both 2D and 3D space (two versions outlined in the article). The sound detected
in this particular project is a loud one shot noise that propagates from over 3
meters away and can pinpoint the sound within 5 centimeters of error.

Each microphone hears the sound at a different time, and the Time Difference of
Arrival (TDoA) between each microphone is used to determine the direction of
the sound (microphones that pick up the sound earlier will be closer to the target
sound). TDoA is also used to also to determine how far away the sound is
originating from as seen in Figure 4.

Figure 4: Example Diagram of individual microphone readings and comparisons

between TDoAs

 16

The hardware used for the MicLoc is a Teensy 3.1 microcontroller as well as 4
SparkFun Electret Microphone Breakout three pin microphones. For the 2D
sound triangulation, the microphones are set up in a square shaped array.

Although the project is built using a Teensy 3.1 Microcontroller, this project can
be adapted to work with an Arduino Uno which is outlined in an earlier version of
the MicLoc on the same blog. [16]

3.2 Relevant Technologies

3.2.1 Image Recognition Methods (HS)

Object recognition is the use of a collection of related tasks for identifying objects
in an image. Image classification involves assigning a class label to an image,
whereas object localization involves drawing a bounding box around one or more
objects in an image. Object detection combines these two tasks and draws a
bounding box around each object of interest in the image and assigns them a
class label, which together is referred to as object recognition. In our project,
image classification was used to determine whether the object in view is a pylon,
a double pylon, or a hoop to travel through. Object localization was planned to be
used to draw the red colored X in the object to be traversed, as well as to
determine the relative position of the obstacle in view so the drone can fly in the
correct direction to complete the specified obstacle. Object recognition method
hierarchy can be seen in Figure 5 below.

Figure 5: Object Recognition hierarchy diagram (HS)

 17

3.2.1.1 Image Classification (HS)

Image classification involves predicting the class of one object in an image. The
Input would be images of a single object, such as an image of the pylons and
hoops. The output would be a class label or several integers that are mapped to
class labels, and a percentage tied to the class label indicating how similar or
unsimilar the image in view is to the target.

Input for our drone would consist of a large pool of images of the pylons and
hoops that will be used in the obstacle course for our drone. These images was
used make up a dataset for our deep learning algorithm to utilize to have a better
understanding of what should be deemed and obstacle and what type of obstacle
is directly ahead. For our drone, Tensorflow will be utilized to build the dataset of
images for the obstacles. Images taken of the obstacles will be fed into
Tensorflow, and a model will then be exported for use in OpenCV. Additionally, to
aid in image classification, images that do not constitute an obstacle can be fed
into a separate dataset

3.2.1.2 Object Localization (HS)

Object localization refers to identifying the location of one or more objects in an
image and drawing a bounding box around their extent. The input, like image
classification, was images of a single object, such as an image of the pylons and
hoops. The output of object localization is a bounding box, or multiple bounding
boxes around the object which is identified within the image, defined by a point (x
and y coordinates relative to the center of the camera), as well as width and
height. There are a variety of TensorFlow and OpenCV algorithms that can
produce a list of object categories present in the image, along with an axis-
aligned bounding box indicating the position and scale of one instance of each
object category. There are several methods for object localization, including
Histogram back projections for fast image detection, MeanShift Algorithm,
CAMshift Algorithm, Grabcut Algorithm, Convolutional Neural Network to predict
four corners for the rectangle (CNN based Bounding Box regression model), and
a Linear regression loss function to train the network.

3.2.1.3 Histogram Back Projection (HS)

Histogram back projection is used for image segmentation or finding objects of
interest in an image. It creates an image of the same size and converts it into
single channel (black and white) of the input image. In the single channel image,
each pixel corresponds to the probability of that pixel belonging to the target
object. The output image will have the object of interest in the color white
compared to the rest of the image.

Color and shape are both contributing factors to discerning if the object is in view.
Multiple images of the same object can be fed into this algorithm, and each
image will contribute a hue (color) and the location of each hue relative to each

 18

other. These pixels constitute the resulting backprojection image. The values
stored in the backprojection image represent the probability that a pixel within the
image belongs to the object to be tracked. An example of image alteration for
histogram BackProjection can be seen in Figure 6 below.

Figure 6: Example of image alteration for histogram BackProjection

3.2.1.4 MeanShift Algorithm (HS)

MeanShift is used to compare all the pixels that constitute the object that needs
to be tracked, and then find the centroid of that object. For example, if you have a
set of points and are given a small frame, to find the centroid of the points you
have to move the frame to the area of maximum pixel density, or maximum
number of points. This process is repeated in multiple iterations until the true
centroid is found with the least amount of error.

For MeanShift algorithms, the histogram backprojection image is passed in as
the initial target location. When the object moves, the movement is reflected in
histogram backprojection image. As a result, the MeanShift algorithm moves the
frame to the new location which contains the maximum density of pixels. An
example of MeanShift movement across BackProjected image can be seen in
Figure 7 below.

 19

Figure 7: Example of MeanShift movement across BackProjected image

3.2.1.5 CAMshift Algorithm (HS)

Identifying the cluster of pixels using MeanShift is not enough to obtain the
bounds of an object to be tracked. Not having the bounds of the object means we
only know its origin, and not its relative width and height in order to determine the
relative distance the object has between it and the camera.

To remedy this issue, CAMshift (Continuously Adaptive MeanShift) can be used
to scale the frame of the points based on the size and rotation of the object.
MeanShift works by using the completed MeanShift , then updating the scale of
the frame.

Additionally, it applies a best fitting ellipse to the frame to determine object
orientation. Then, MeanShift is applied again with the newly scaled frame until
convergence. An example of CAMshift movement across BackProjected image
can be seen in Figure 8 below.

Figure 8: Example of CAMshift movement across BackProjected image

 20

3.2.1.6 Grabcut Algorithm (HS)

The Grabcut algorithm is useful for highlighting the object in view, and is primarily
used to live trace an object, or render everything in the background behind the
object invisible. Grabcut works by using preset outlines set by the user which
resemble the object to be tracked. The outlines are used to find and trim the
object in view.

For our project, we need to indicate the object being tracked with a red X, but if
we would like to take a step beyond just this, we can also highlight the object with
a colored glow to indicate that we are tracking a specific object in case there are
multiple objects in view behind the red X. An example of GrabCut being
performed on a designated obstacle can be seen in Figure 9 below.

Figure 9: Example of GrabCut of a designated obstacle

3.2.1.7 Convolutional Neural Network (HS)

The role of the Convolutional Neural Network is to reduce the images into a form
which are easier to process, without losing features which are critical for getting a
good prediction. This is important for an algorithm to learn features, and to be
usable for massive datasets.

Each color channel in an image is separated into their corresponding RGB
layers, and then each of the three color layers are run under the convolution
operation to extract the edges of the object, as seen in Figure 10. This data is
then used to draw an outline around the desired object, with an x-coordinate, y-
coordinate, width, and height.

 21

Figure 10: Object tracking using RGB layer separation (detecting red edges)

3.2.1.8 Linear Regression (HS)

Linear regression is a supervised machine learning algorithm where the
predicted output is continuous and has a constant slope. It’s used to predict
values within a continuous range, rather than trying to classify them into
categories. Linear regression training is used to improve the prediction equation
by looping through the dataset multiple times, updating the weight and bias
values in the direction indicated each iteration by the slope of the cost function
(gradient).

Linear regression training is complete when we reach an acceptable error
threshold, or when training iterations fail to reduce cost. simple linear regression
draws and updates a regression line through points plotted using dataset images.
The variables used in this algorithm represent the attributes and distinct pieces of
information we have about each image.

3.2.1.9 Object Detection (HS)

For object detection, we are prohibited by the rules set by our sponsor to use the
YOLO (You Only Look Once) object detection system. Instead, our drone will
utilize the Single Shot Detector (SSD) object detection system to locate and track
the obstacles to traverse.

Single Shot Detector achieves a good balance between speed and accuracy.
SSD runs a convolutional network on input image only once and calculates a
feature map. A small 3×3 sized convolutional kernel on the feature map is then
used to predict the bounding boxes and classification probability. To handle size,
SSD predicts bounding boxes after multiple convolutional layers. Since each
convolutional layer operates at a different scale, it is able to detect objects of
various sizes.

 22

3.2.1.10 Instance Segmentation (HS)

When performing object detection the bounding box for each object is computed,
then a class label is associated with each bounding box. The limitation of object
detection is that indicates nothing regarding the shape of the object itself while
only displaying a bounding box. Instance segmentation, on the other hand,
computes a pixel-wise mask for each object in the image. With instance
segmentation foreground objects can be segmented from the remaining
background. Instance Segmentation works with the help of the GrabCut
algorithm used in object localization. A direct visual comparison between Object
Detection and Instance Segmentation can be seen in Figure 11 below.

Figure 11: Object Detection versus Instance Segmentation

3.2.2 Computer Vision Libraries (HS)
There exists a wide range of computer vision algorithms in robotics for uses such
as object recognition, image recognition, and simultaneous localization and
mapping (SLAM) navigation. Cameras perceive colors differently than the way
the human eye perceives the same colors. Human vision cannot accurately
discern the true color of an object, particularly when a color is surrounded by
other dark colors versus when a color is surrounded by other light colors. To
measure the absolute, “real” color values of an object, the Red Green Blue
(RGB) color coding system should be used to store the color data.

However, representing color in a format which is representative of how the
human eye perceives the colors is very difficult. Rather than trying to create a
sensor that operates like the human eye, Hue Saturation Value (HSV) color
coding scale is used instead. The crux of our drone project is the detection of
obstacles throughout the challenge course. In order to perform these tasks, there
is little to no apparent need to take into consideration how the human eye might
need to perceive the color of obstacles in the challenge course. Therefore, the
drone should utilize the absolute color values and the RGB color coding scheme,

 23

to compare the colors of the objects it detects. This ensures that the colors of the
objects are consistently represented in a form that our drone can understand.

For this autonomous drone, Lockheed Martin prohibited the use of the YOLOv3
computer vision algorithm entirely. Four other open source deep learning
algorithms that were researched for use in object detection, was OpenCV, Keras,
PyTorch, and Caffe. 3 categories analyzed to compare the algorithms are image
classification, object detection, and object tracking.

A test run on a 2 core CPU with 8GB RAM, no GPU, and on a Ubuntu 16.04
Operating system was conducted by Dr. Satya Mallick comparing the four
algorithms with 100 runs each. For image classification, Caffe averaged 2200ms
being the slowest, Keras averaged 500ms, OpenCV averaged 320ms, and
PyTorch was the fastest at 280ms. For Object Detection, Keras, PyTorch, and
Caffe averaged a very slow 27.832 seconds per frame using OpenMP. YOLOv3
with Darknet took 12.730 seconds per frame on average, and OpenCV was the
most optimal, at a very fast 0.714 seconds per frame to detect an object as seen
in Figure 12. Object tracking when compared to OpenCV was a landslide in
OpenCVs favor, as it ran 6 times faster on average than the other algorithms. [6]

Figure 12: CPU Performance Comparison Deep Learning frameworks [6]

 24

However, when we were looking for examples to build our object detection
network, we were not able to find as many resources for OpenCV. For this
reason, we decided to switch to use Tensorflow. In addition to being able to find
more resources, we were able to more easily convert our Tensorflow model into
a form that could be used by TensorRT. If we weren’t able to use TensorRT, our
model would have run significantly slower on our drone computer.

3.2.3 Object Detection Models (CJ)
In this section, we will determine which kind of object recognition algorithm we
will use. Object detection is integral to the operation of our project. Our drone
must be able to navigate to and around obstacles in order for the drone to
complete the obstacle course. We believe the best best way for the drone to
determine where these obstacles are is to use a camera and process the image
using object recognition. We will discuss several different algorithms and their
performance. We will be excluding YOLO based algorithms from this list as our
customer has requested that we use a different model.

Primarily, we will be looked at one-stage detection algorithms. This is because
one-stage algorithms tend to be quicker and require less processing that multi-
stage detectors. However, this comes with the tradeoff of less accurate results. In
our project where the speed of the algorithm will effectively determine the speed
at which we will be able to alter our course and make corrections, we are willing
to prioritize speed over accuracy.

3.2.3.1 CenterNet
CenterNet is a relatively new algorithm created by Zhou, Wang, and Krähenbühl
(2019). This detection algorithm finds objects first by identifying the center points
of objects and then determining the bounding box. According to their study,
CenterNet works faster than both YOLOv3 and RetinaNet while maintaining a
similar if not greater level of accuracy. However, due to the model being so new,
CenterNet does not have a lot of resources available for efficient implementation
of the algorithm.

3.2.3.2 RetinaNet
RetinaNet is an object recognition algorithm created by Lin et al. (2017). It is a
slightly older algorithm that is outperformed by YOLOv3 and CenterNet but
provides better performance and accuracy than algorithms like YOLOv2 and
Single Shot Detector (SSD). RetinaNet has been around for a while so there are
some (but not many) resources to help us implement the algorithm.

3.2.3.3 Single Shot Detector (SSD)
SSD was developed by Lui et al. (2016). SSD works by creating a fixed set of
bounding boxes and determining if there is an image in each of them. SSD is the
oldest out of the three being compared. The algorithm is the least accurate out of

 25

the three discussed, but it is a well supported algorithm that can work as fast as
RetinaNet.

3.2.3.4 Model Decision
Between these two options, RetinaNet seemed initially to be the better choice.
Though not as fast or accurate as CenterNet, it had more info on how to
implement it. However, after doing more research while trying to implement a
RetinaNet, we found it extremely difficult with our entry level knowledge of
computer vision applications.

Due to the increased number of resources, we found that a SSD was the easiest
to implement. In addition to being easier to implement, an SSD with a MobileNet
V2 image recognition algorithm backing was found to run at 39 frames per
second on our Jetson Nano according to Nvidia [26]. We could have chosen a
different image recognition backing, but it wouldn’t have operated nearly as fast.
However, the speed comes at the cost of accuracy. However, in testing we found
the model to be accurate enough for our project.

3.2.3.5 Model Training
An SSD MobileNet V2 model must be trained using a unique data set in order for
the algorithm to properly detect our obstacles. We took images and pictures of
the obstacles, label these images, and then convert them into a format that can
be read by TensorFlow or OpenCV. Most of these images were used to train the
database, and a small subset that were not be used for training were used to test
how well the model operates.

Model training can take a long amount of time due to the number of images and
the complexity of our model. Therefore, researched ways that will allow us to
train our model in a relatively short amount of time. If we wish to train it
ourselves, we will need to use a computer that has both a powerful CPU and
GPU. However, while the model is being trained the computer will be practically
unusable due to the workload the training will cause. Additionally, no group
members have a computer that would allow for relatively quick computation.

Another option is using the Newton Visualization Cluster that is provided by the
UCF Advanced Computing Research Center. The Newton cluster is composed of
NVIDIA Tesla V100 GPUs that would allow our model to be trained in a few
hours as opposed to a day or two. This would have required us to request
permission from the Advanced Computing Research Center which would have
taken some time, but would be free for us to use.

A third option is to rent GPUs from an online service such as Google’s Cloud
TPUs or Gradient. This would have allowed us to train our models quickly without
the need to wait for approval from the research center. Some resources are
available to users for free, but free plans often restrict how much data can be put

 26

on their servers and how long the training to run for. Paid plans would provide us
with more resources including memory and much longer run times.

Initially we believed that using cloud GPUs would have been the best option.
However, due to the restriction on the free versions of the cloud GPUs and the
high cost of using these GPUs, we decided to use one of our own computers.
Additionally, it was quicker and more easily set up than working through an
online portal.

Our SSD Mobilenet V2 model was trained using one of our personal computers
with a GTX 980ti GPU using Tensorflow. Tensorflow was chosen due to its
theoretical compatibility with the Jetson hardware. The images used for training
were collected by us during our test sessions in the Lockheed Martin drone lab
and outside, and these images were labeled using ‘labelImg’. The configuration
of our training was based on that Tensorflow researchers used for training an
SSD for the COCO dataset.

Once the model was trained, the frozen model was transferred to the Jetson
where the model was converted into a UFF file, a form usable by TensorRT.
TensorRT was then used to optimize the model for use with the GPU located on
the Jetson Nano. This process was difficult due to issues in compatibility
between particular versions of Tensorflow and TensorRT. In this case,
Tensorflow 14.0 was creating nodes in the graph that were unable to be properly
interpreted by our version of TensorRT. We were able to resolve these issues
after finding a source detailing how these issues could be resolved. [27]

3.2.4 Sound Detection Methods (HS)
Another obstacle that needs to be tracked in the course for the drone, is the
acoustic waypoint with an unknown shape and size. This obstacle will emit a
specific sound, and will need to be spatially located so the drone can land near or
on top of it, and then lift off to detect the next obstacle.

To achieve this, our drone had an array of four microphones; a front facing, back
facing, left facing, and right facing microphone. The left and right microphones
will be used in tandem with the front microphone to triangulate the location of the
acoustic waypoint. Additionally, the left and right microphones can be used with
the rear facing microphone to obtain a second triangulation of the sound, in order
to have a 360 degree range of sound detection. If this proved to not be accurate
enough for our drone, we could have had 4 separate triangulations using the 4
microphones to get the best relative position of the sound. However, we found
the initial configurationt to have good performance.

3.2.4.1 Microphone Triangulation
The method used to triangulate the sound using microphones is simple and
effective. The central microphone will act as a control for the sound, and then

 27

there will be a check with the microphone to the left of the central microphone
and a simultaneous check with the microphone to the right. The volume is
compared from the side microphones to the central control microphone, and the
sound direction is correlated with whichever microphone (left or right) picks up
the most volume. Volume intensity can potentially be used to determine the
distance of the acoustic waypoint, although we did not have enough time to test
this.

3.2.4.2 Sound and Noise Filtering (HS)
There are two methods that can be utilized to filter out the drone’s motor noise in
order to accurately detect the acoustic waypoint; a hardware approach and a
software approach. The hardware approach will focus on using more sound
reducing propellers at the potential cost of performance, and the software
approach will utilize the on board hardware-enabled algorithms by the XMOS
XVF-3000 in the ReSpeaker Mic Array v2.0. Both of these methods were
employed together to maximize noise reduction for the microphones.

3.2.4.3 Noise Filtering Hardware Approach (HS)
Minimizing the vibrational noise from the drones moving components can be
achieved by focusing on different components of the drone such as the motor
and the propeller, which can significantly reduce the amount of noise that comes
from a drone.

One method of reducing drone noise is the use of larger slower propellers. Using
larger propellers, means the motors can spin at a slower rate, thus making the
drone quieter. Factors to consider when utilizing this method of noise reduction
include drone max dimensions and weight limitations. Using a larger propeller
emans the motor will need more torque, and thusly it will need to be a larger,
heavier, and more powerful motor, which will add to the overall weight of the
drone. Additionally, using a larger propeller will infringe on the dimensional
restrictions of the drone which limit the maximum width and length of the drone to
18 inches squared.

Another method of reducing noise is the use of shrouds. Propeller shrouds are a
new method of reducing drone noise through the use of funnels made of nano-
fiber or a similar solid light sound dampening material to capture most of the
drone motor sounds and direct them upwards as seen in Figure 13. These
shrouds act as a barrier around each of the propellers on the drone, which
mitigates the sound made from the propeller tips cutting against the air
surrounding it. This also serves as a dual purpose by protecting the propeller
blades from objects, such as the obstacles our drone will pass through and
around, as well as the adversarial mine that will be placed in the obstacle course.

 28

Figure 13: Propeller Shroud Diagram

The last method for reducing drone noise through hardware, is the use of low
noise propellers. DJI engineered the Phantom 4 Low Noise propellers for their
Mavic Pro drone, which utilize a raked wingtip design to lower the sound volume
generated by the propellers by 5 decibels, and reduce the pitch of the sound as
seen in Figure 14.

Figure 14: DJI Regular Propellers (Left) versus DJI Low Noise Propellers (Right)

Due to a change of sponsor requirements caused by the pandemic, we did not
explore this further.

3.2.4.4 Noise Filtering Software Approach (HS)

Acoustic Echo Cancellation (AEC) is designed to remove echoes, reverberation,
and unwanted added sounds from a signal that passes through an acoustic
space. As shown in Figure 15, the sound coming from the remote sound, is sent
in parallel to a digital signal processor path and to an acoustic path. The acoustic
path consists of an amplifier, an acoustic environment, and a microphone
returning the signal to the DSP.

 29

The algorithm continuously adapts this filter to model the acoustic path, and the
output of the filter is then subtracted from the acoustic path signal to produce a
clean signal output with the linear portion of acoustic echoes largely removed.
The AEC block also calculates a residual signal containing nonlinear acoustic
artifacts. This signal is sent to a residual echo cancellation block that recovers
the input signal even further. The signal is then passed through a noise reduction
function to produce the filtered sound channel output. The filter stops filtering
when it detects sounds in the unrelated direct sound input. This allows sound
from the microphone to be added to an additional secondary sound channel
independent from the first sound channel, as seen in Figure 15.

The ReSpeaker Mic Array V2 has the capability to utilize AEC to filter out the
constant drone motor propeller sound and listen for the frequency emitted by the
acoustic waypoint. The sound emitted by the acoustic waypoint will be a set
frequency which can be filtered out. The array also has the capability to locate
the origin of the sound omnidirectionally, which can then be fed into the Jetson
Nano CPU to redirect the flight path of the drone when the sound is within a set
vicinity.

Figure 15: AEC Filter Diagram

3.2.4 Flight Controller Software (RJ)
An important consideration when finalizing a flight controller to use is determining
which flight stack we will use. The flight stack is the firmware that the flight
controller operates on, and can provide varying feature sets. The two primary
open source flight stacks are PX4 and ArduPilot. The PX4 has been around
since 2012, while the ArduPilot has been around since 2009 so they both have
good documentation. The choice, for our purposes, will come down to preference
and ease of use. For maximum flexibility when creating our drone, we wanted to
have the option of using either flight stack as necessary even though we selected
ArduPilot in the end.

 30

3.3 Parts Selection

3.3.1 Computer (CJ)

3.3.1.1 Computer Requirements
The computer of the drone was used to control the main functions of the drone.
These functions include image recognition on frames received from the camera,
receiving messages from the ground station, running the autonomous loop code,
sending commands to the flight controller, and sending video to the ground
station. The computer needed to be powerful enough to run these programs
simultaneously.

Image recognition required the most intensive processing, so computers that are
able to speed up this processing will be preferable. Specifically, we looked at
computers that have a Graphical Processing Unit (GPU). GPUs are processors
specifically designed to do parallel computations. This makes them especially
fast at doing the image convolutions necessary for identifying the obstacles our
drone will need to fly towards and navigate around.

In addition to the capabilities of a computer, we also needed to account the
weight and size of the computer. A very large computer will be unable to fit in the
small amount of space we have on our drone, and a very heavy computer will
require more power to keep the drone flying. For this reason, we looked for small,
lightweight computer. Considering the above, we found two CPUs that could
provide us both with the processing power we need as well as being small and
lightweight.

3.3.1.2 Raspberry Pi 4 Model B
The Raspberry Pi 4 Model B (Pi 4B) is a computer that uses a BCM2711 chip,
which contains a quad-core Cortex-A72 64-bit processor that can run at 1.5 GHz.
The chip also contains 4GB of LPDDR4 memory and a VideoCore VI GPU that
can be used by OpenGL ES, an embedded graphics API. The Pi 4B has 4 USB
ports (two USB2, two USB3) and 40 GPIO pins that can support UART, I2C, and
SPI input/output. It also has an ethernet port, two micro-HDMI ports, a Wifi
module, and a microSD card slot (with included micro SD card) that is used for
storage. The Pi 4B has a size of 85 x 56 x 16 mm and a mass of 46 grams (1.6
oz). The Pi 4B requires 5 volts to run. The processor itself uses 1 amp, but the
board in total can use up to 3 amps.

3.3.1.3 Jetson Nano Development Kit
The Jetson Nano Development Kit is a computer that uses a quad-core Cortex-
A57 64-bit processor that can run at 1.42 GHz. The computer contains 4GB of
LPDDR4 memory and an NVIDIA Maxwell (128 CUDA core) GPU that can be
utilized using NVIDIA’s libraries. The Nano has 4 USB3 ports, 40 GPIO pins that
can support UART, I2C, I2S, and SPI input/output. It has one HDMI A port, an

 31

ethernet port, and a microSD card slot that is used for storage (no microSD card
included). The Nano has no way out of the box to work over wifi, so wifi capability
can be added via the M.2 E key slot. The Jetson Nano Development Kit has
dimensions of 100 x 80 x 29 mm and a weight of 4.1 ounces. The Nano
processor requires 5 volts to run and can run at 5 or 10 watts. The The
development board with peripherals can draw up to 4 amps. The Nano also
comes with a heat sink.

3.3.1.4 Comparison & Selection
Comparing the processors, the computers were fairly similar in many ways. Both
use a microSD card for storage and 4GB of LPDDR4 memory. Both have 40
GPIO pins that can be also be used for various kinds of serial communication.
Both have ethernet ports. Both run on 5 volts. However they differ in other
significant ways. They both have 4 USB ports, but the Nano’s ports are all USB3,
which are faster than USB2, while the Pi 4B only has two USB3. This could
enable faster data collection from USB based sensors. Wifi is also an important
factor as the Nano does not come with a wifi module, meaning that it must be
connected via ethernet or an external wifi module to retrieve important code
bases from the internet.

GPUs of these devices weres very different. The Pi 4B has uses a VideoCore VI
while the Nano uses a Maxwell containing 128 CUDA cores. There is not a lot of
information on the technical specifications of the VideoCore VI. While OpenGL
ES can be used to utilize the cores, the exact processing power of the VideoCore
VI is not documented. The CUDA cores in the Maxwell are designed by NVIDIA,
and TensorRT, a machine learning framework based on TensorFlow, is
optimized to work on the Nano’s GPU. Additionally, these two devices have
similar, but not identical processors. The Nano runs at a slightly slower clock rate
(1.42 GHz) compared to the Pi 4B (1.5 GHz). The best way to determine which
computer would be most Comparative benchmarking of object recognition by
Alasdair Allan indicates that the Nano runs faster than the Pi 4B using
TensorFlow when the TensorFlow code is optimized for TensorRT. [18] A
comparison of both computers can be seen below in Table 5.

Table 5: Computer Comparison

Computer Jetson Nano Raspberry Pi 4B (4GB)

Processor Cortex-A57 (4 cores) Cortex-A72 (4 cores)

Clock Rate 1.42GHz 1.5GHz

Power Consumption 10 W or 5 W 5 W

GPU Maxwell (128 CUDA cores) VideoCore VI

Weight 4.1 oz 1.6 oz

Price $99 $55

 32

Using the benchmark along with the above information, we decided to use the
Jetson Nano Development Kit. This kit provided quicker image recognition using
TensorFlow than using the Pi 4B. Even though a wifi module needed to be
bought to connect to the internet, this allowed us to pick a wifi module that will
assuredly connect to our ground station from at least 100 feet away. Also, though
the Nano is larger and heavier, it was not so much as to prevent its use in our
project. Additionally, in the same benchmark Allan found that the Nano draws
less current both when idle and when operating, though the power savings may
be offset by the additional weight of the Nano. For these reasons, we have
chosen the Jetson Nano.

We found the Jetson to work well for or project. It was able to process our
images very quickly and was able to run all the software we needed to run.
However, we had issues running it in the 10W mode when the computer was
connected to the battery. For this reason, we consumed less power than we
initially thought was needed. However, this was at the cost of things running
slightly slower.

3.3.2 Flight Controller (RJ)

3.3.2.1 Flight Controller Requirements
The purpose of a flight controller is to control the movement of the drone by
adjusting the power delivered to each motor via the electronic speed controllers.
The flight controller also determines the orientation and movement of the drone
using sensors such as accelerometers, gyrometers, and barometers. Flight
controllers typically have a recursive control system to account for environmental
factors in order to provide stable flight across a variety of conditions. Generally,
flight controllers and their software provide a way for the user to configure their
remote control in order to fly the drone. Many flight controllers have an SPI and
I2C bus to connect peripherals to the board, and directly use those components
to support flight through built-in functionality on the flight controller’s firmware.
Since we are planning on connecting the camera and microphone to our CPU so
that our program can analyze the data and determine how the drone should
respond, we need to interface the flight controller with the CPU. To accomplish
this, we required the software of the flight controller to be open source so that we
can modify the code to configure the exchange of information between the
sensors, computer, and flight controller. Instead of using a remote control to
command the inputs for flight, the CPU will provide the inputs.

To interface the CPU with the flight controller, we needed a flight controller that
has a serial connection to implement the MAVLink protocol.

Flight controllers also come with 8-bit processors up to 32-bit processors. This
processor bit count correlates to the performance of the flight controller, as the
32-bit ones are usually faster, thus operating the drone more smoothly. We
would be flying in an environment with minimal tolerances; for example, the

 33

limited width of a ring that our drone is required to fly through and the need to
avoid adversarial mines at short notice, we will need a responsive flight
controller.

One option for a flight controller would be to create our own using an Arduino
microcontroller (or similar). The benefit to creating our own would be to have a
flight controller that has all of the features we need, potentially at a lower cost.
For example, several flight controllers include a GPS which we would not need
for our project. We would, however, need to find the peripherals we want our
flight controller to have and implement them ourselves. An Arduino Nano 3.x
costs about $10, and a 9-axis altitude-gyrometer-magnetometer combination
sensor costs about $8.49. The cost for producing our own Flight Controller would
be less than $70, however, we expected that going this route would involve a
substantial amount of time to configure, debug, and test the flight control
capabilities for this board. For this reason, we will opt to find an off the shelf
Flight Controller that satisfy our needs. Moreover, selecting an off the shelf
solution came with a considerable amount of product support and documentation
that will aid us in trying to implement our autonomous drone.

3.3.2.2 Parts Comparison and Selection
A popular option for a flight controller is the HGLRC F4.V2 flight control board. It
uses a 32-bit CPU which is one of the main features that we required. It also
includes a barometer for altitude detection, and gyroscope, magnetometer, and
accelerometer for orientation and speed detection. The downsides of this flight
controller, however, it only runs on Betaflight flight stack, which is relatively
newer than the other mentioned flight stacks and therefore might not have the
documentation and support as those flight stacks. Specific to the HGLRC, though
its price is $33.99, it also does not have the capability to add many external
components through the use of I2C and SPI. We will be using the CPU to
manage many of the sensor inputs for object detection and tracking, however, we
may utilize several of the flight stack features for other purposes.

A popular flight controller is the Readytosky Pixhawk. This flight controller costs
$72.99, but it uses the 32-bit ARM CortexM4 and has the ability to run the NuttX
RTOS real-time operating system. The Readytosky Pixhawk also includes
sensors including the barometer for altitude detection, and the gyroscope,
magnetometer, and accelerometer for orientation and speed detection. This
model Pixhawk allows support for both the PX4 and the ArduPilot flight stacks,
which will allow us to have greater flexibility once we implement our drone. Most
importantly, the hardware on this flight controller allows us to connect our Nvidia
Jetson to send commands for flight. While we expect this to be our primary
method of interfacing with the flight controller, this Pixhawk additionally provides
an I2C and SPI bus which would allow us to also take data from our sensor
components and use it directly into our flight stack for certain features that may
not need to be implemented on the CPU. A comparison of the flight controllers is
shown below in Table 6.

 34

Table 6: Flight Controller Comparison

Flight Controller HGLRC F4.V2 Readytosky Pixhawk

Processor 32-bit 32-bit

Flight Stack BetaFlight PX4 or Ardupilot

I2C No Yes

SPI No Yes

Price $33.99 $72.99

We selected the Pixhawk not only because of its advanced features, but also
because we were able to receive one free at cost from our sponor. We found that
our flight controller worked well enough for what we needed. However, it was a
first generation model and we believe that choosing a more recent generation
may have improved the performance of our position hold. In addition, our
PixHawk did not come with all of the necessary cables to connect items to the
flight controller. This created project delays as we had to wait for cables for
certain components.

3.3.3 Camera (CJ)

3.3.3.1 Camera Requirements
The purpose of the camera on our drone was to identify and navigate towards
obstacles using object recognition. In order to do so, we needed a camera that
will meet the field of view requirement set by Lockheed Martin (not yet
determined). In addition, we also needed to determine the distance to an
obstacle both to report to the users over the video stream and for the purpose of
maneuvering around the obstacle. In the following sections, we look a look at
possible camera layouts and technologies that will help accomplish both goals.

3.3.3.2 Single Camera
A single front-facing camera would provide us a video stream to process and
identify objects in its field of view. However, the main problem with this approach
is the ability to determine distances to an object. Monocular (as in single camera)
depth calculation is possible. In the NVIDIA Trail Drone study, the drone was
able to create a 3D point cloud based using the direct sparse odometry (DSO)
simultaneous localization and mapping (SLAM) method created by Engel, Kulton,
and Cremers (2017).

The point cloud created using DSO is used by the trail drone to determine
objects that are in the path of the drone and steer away from them as well as
keep track of the position of the drone. This method works well for the trail drone

 35

because it simply needs to avoid the large number of obstacles located on the
edge of the trail. However, we believe that determining the exact distance to an
object would be difficult with such a sparse cloud of points. After identifying an
object via object recognition, we would need to determine which region(s) we
would need to take points in the current image and use those to estimate the
distance to the obstacle, and we believe this could be a difficult and time-
consuming task to develop and make sufficiently accurate.

The benefit to using this method would be the ability to utilize the SLAM that is
done during the calculation of the point cloud. This SLAM could be used along
with our internal measurement unit (IMU) that can be found in our flight control
board to give our movement commands greater precision.

3.3.3.3 Double Cameras (Stereo Vision)
The use of two front facing cameras would enable us to use stereo vision to
calculate depth from the cameras by comparing the images of the two cameras.
By determining the difference in locations of an object within both cameras’ field
of view, we are able to determine the distance away that object is. Closer objects
will have a greater displacement between the two images, while objects farther
away will have little displacement. By calculating this for the entire image, this
gives us entire regions of dense depth information that we believe would make
calculating the distance to an obstacle easier than with a sparse point cloud.

The main downside to the stereo vision method is the need for the drone
computer to calculate the depth of the entire image. Because of this, it may be
more computationally intensive compared to the monocular DSO method.
Additionally, it may be harder to use a single video stream to do object
recognition from due to each of the cameras being slightly off center.

3.3.3.4 Depth Cameras
A depth sensor is a component that is able to determine the depth to some
object. A depth sensor accomplishes this by sending out a signal and measuring
the amount of time it takes to return. The most basic forms of depth sensors
simply send out a single signal straight out ahead of it. This can be good for
estimating distance to large objects, but our obstacles, especially the ring, will be
hard to measure due to its thin nature. The depth camera has two separate
sensors, as shown below in Figure 16.

Instead, we considered depth cameras that can give us a 2D depth image of the
environment in front of them. Such cameras include the Intel RealSense D400
series cameras. These sensors use two image sensors to calculate the depth of
objects in front of them up to 10 meters away. This calculated image could then
be sent over USB from the camera to the computer. [14]

 36

Figure 16: Intel RealSense Camera Architecture, courtesy of Intel [14][E]

The main benefit of this camera over standard cameras is that it calculates the
entirety of the depth image on its own computer. This allowed us to free up a
significant amount of processing on our main drone computer that can instead go
towards object identification and determining the distance of an obstacle based
on the depth image.

3.3.3.5 Method Comparison and Selection
We believe that computing an entire depth image based on stereo vision will
prove to cause too much strain on our CPU. This leaves the two camera options
that are less computationally expensive. By using DSO SLAM with a single
camera, we would have both a way to calculate the distance to an obstacle and
provide us with location information. The main downside to this method is the
added computational cost of the method and the possible difficulty in determining
distance to an object. If we were to use a depth camera, the calculation of depth
image would be done entirely in the camera itself, leaving the computer to simply
calculate the distance to an obstacle based on the depth image and the object
identified. A SLAM algorithm, while not implemented by the camera, could be
implemented by the computer to improve drone navigation.

Based on the above, we have decided to use a depth camera both to reduce the
need for computation on the drone computer and the work needed to determine
the distance to an object.

 37

3.3.3.6 Part Comparison and Selection
There are two brands which we are looking at for depth cameras. The first brand
we are looking at are the Intel RealSense D400 series depth cameras. These
cameras use two monochrome image sensors to calculate the depth of any
object within both sensors field-of-view (FOV) up to 10 meters. In order to
improve the operation of these sensors in dim lighting conditions, the camera is
equipped with infrared (IR) projectors to improve vision. These sensors produce
a depth image with a resolution up to 720p @ up to 90fps. In addition these Intel
depth cameras have an RGB image sensor (1080p @ 30 fps) with a FOV of 70°
x 42° (Horizontal x Vertical). These cameras weigh 72 grams (2.5 oz) and can be
plugged in via USB3 and can interface with the ROS [19] or the Ubuntu that runs
on the drone computer.

These cameras come in three major SKUs. One is called the D415 and has a
depth image FOV of 63.4° x 40.4° and a rolling shutter, meaning that the pixels
values are taken one at a time as opposed to all at once. One is called the D435
and has a depth image FOV of 85.2° x 58° and a global shutter, which means
that all pixel values are taken at once. The last one is called the D435i and is the
same as the D435 with the addition of an inertial measurement unit (IMU).

The second brand we are looking at are the MYNT EYE S1030 cameras. These
cameras have no RGB sensor, but make up for it in a FOV of 122° x 76° and a
depth range of 18 meters. Both the output depth image and the stereo image
sensors have a resolution of 480p @ 60fps. These also come standard with an
IMU. These cameras come in two SKUs: one with an IR projector to make
detecting depth in low light easier, and one without an IR projector. Either SKU
can be plugged in via USB3 and can interface with the ROS or the Ubuntu that
runs on the drone computer. A comparison between all of the cameras can be
seen in Table 7 below.

Looking at our needs, we believe that having an IMU in our camera will be
redundant due to being able to receive data from the IMU on the flight controller.
This means paying extra for the Intel D435i would not make sense. This leaves
us with four options. The cheapest of these options is the Intel D415 at $149.
This would likely work, but having a greater depth FOV is likely something that
could help in identifying obstacles.

The next cheapest options are the Intel D435 and the MYNT EYE S1030-non-ir,
both priced at $179. The D435 has better depth resolution than the S1030-non-ir,
but a smaller and shorter depth field of view. The D435 also has an RGB sensor
and an IR projector that the S1030-non-ir does not. The IR sensor is not likely to
be of much use to us due to the well lit conditions our drone will typically fly
under. The RGB sensor on the other hand is very useful, especially if we are
training our object recognition software with color images. The RGB sensor can
also assist manual users in identifying important objects while using the drone
remotely. The most expensive camera is S1030 at $239, which when compared

 38

to the S1030-non-ir only has added an IR projector which we believe to be
unnecessary.

Table 7: Camera Comparison

Camera D415 D435 D435i S1030 S1030(no ir)

Depth FOV 63.4°x40.4° 85.2°x 58° 85.2°x 58° 122° x 76° 122° x 76°

Depth
Resolution

720p @ 90fps 720p @ 90fps 720p @ 90fps 480p @ 60fps 480p @ 60fps

RGB FOV 70° x 42° 70° x 42° 70° x 42° N/A N/A

RGB
Resolution

1080p @
30 fps

1080p @
30 fps

1080p @
30 fps

N/A N/A

IMU No No Yes Yes Yes

Cost $149 $179 $199 $239 $179

Since having a smaller FOV would not preclude us from accomplishing our task
and that a RGB video feed to assist in image recognition will be useful, we chose
to use the Intel D435.

Our Intel D435 worked well and its ROS node allowed for easy integration.
However, due to being unable to meet as a team after the COVID19 breakout,
we were unable to implement the feature utilizing the depth image to determine
the distance to objects. This wasn’t required under the updated requirements.

3.3.4 Microphones (HS)
The purpose of the microphones on our drone is to identify and navigate towards
the designated acoustic waypoint using sound recognition and detection. In order
to do so, we needed an array of microphones that will be able to listen for the
designated sounds the Lockheed Martin will provide us, as well as communicate
with the on-board CPU. In the following sections, we looked at possible
microphone arrays that will help accomplish this goal.

3.3.4.1 Seeed’s ReSpeaker Mic Array v2.0
The ReSpeaker Mic Array v2.0 is a USB powered is a microphone array with 4
microphones, as well as a built in chip that contains sound triangulation and
noise filtering. The board is capable of detecting voices up to 5 meters away with
the presence of background noise. The onboard hardware-enabled algorithms
are powered by the XMOS XVF-3000 enable the device to know the direction of
a source, allows the device to focus only on sounds that come from the target
direction, as well as Ignore background noise.

 39

Specifications include the XVF-3000 from XMOS audio processor for enhanced
sound processing and filtering, four ST MP34DT01TR-M digital microphones,
twelve programmable RGB LED Indicators, a maximum sample rate of 48Khz,
and a voice capture radius of 10 feet, at a price of $69.00. The greatest feature of
this microphone array is that it has an advanced voice processor with built in
Acoustic Echo Cancellation (AEC) to filter out the drone’s noise to better hear for
the designated frequency.

3.3.3.2 Seeed’s ReSpeaker 2-Mics Pi
HAT is a dual-microphone expansion board for Raspberry Pi designed for AI and
voice applications. The board is developed based on WM8960, a low power
stereo codec. There are 2 microphones on both sides of the board for collecting
sounds. it also provides 3 APA102 RGB LEDs, 1 User Button and 2 on-board
Grove interfaces for expanding your applications.

This microphone array is light, minimalistic, and although it is designed for the
Raspberry Pi, it is possible to integrate this device with other Linux based CPUs.
Specifications Include the WM8960 low power stereo codec for audio processing,
two MSM321A3729H9CP high performance analog microphones, a maximum
sample rate of 48Khz, and a voice capture radius of 10 feet, at a price of $9.90.

3.3.3.3 Seeed’s ReSpeaker 4-Mic
Linear Array Kit is an extension board, aka HAT designed for a Raspberry Pi. It's
a linear microphone array kit that comes with four microphones and designed for
AI and voice applications. That means you can build a more powerful and flexible
voice product with small CPUs. Although it is designed for the Raspberry Pi, it is
possible to integrate this device with other Linux based CPUs. This microphone
array specifications includes two X-Power AC108 ADCs for audio processing,
four MSM321A3729H9CP high performance analog microphones, a maximum
sample rate of 48Khz, and a voice capture radius of 10 feet, at a price of $24.90.

3.3.3.4 Part Comparison and Selection
All three options listed above are compatible with the Jetson Nano. The stereo
codec is the chip associated with sound recognition for all of the attached
microphones in the array. This was important for our drone so it could pinpoint
the specified sound among other noises within the obstacle room, including the
drone’s own motors and propellers.

The AC108 ADC is a high power codec with an emphasis on word detection,
which is useful for detection of key words or sounds, as opposed to the WM8960,
a low power stereo codec, more suited for sound detection on a small low power
CPU, and not for precise audio recognition. Both the 4-Mic Linear Array Kit and
2-Mics Pi HAT share the same specifications for microphones, audio sample
rate, and a voice capture radius of 3 meters.

 40

The ReSpeaker Pi series is the cheaper brute force method to sound detection,
while the Seeed’s ReSpeaker Mic Array v2.0 is the more expensive and easier to
implement option. The Seeed’s ReSpeaker Mic Array v2.0 also is equipped with
higher quality microphones that can detect sound from 5 meters away, as well as
containing it’s own on board chip for noise filtering and sound positioning.
Considering the large budget with this project, and the capabilities of the XVF-
3000 chip, the ReSpeaker Mic Array v2.0 will be the best suited choice for this
drone to detect the acoustic waypoint. A direct comparison can be viewed in
Table 8 below.

Table 8: Microphone Comparison

Microphone Mic Array v2.0 2-Mics Pi 4-Mics Pi

Sound
Processor

XMOS XVF-3000
(stereo-AEC voice
processor)

WM8960 (low
power stereo
codec)

X-Power AC108
ADC (x2)

Microphones MP34DT01TR-M
(x4) (digital)

MSM321A3729H9
CP (x2) (analog)

MSM321A3729H9C
P (x4) (analog)

Max Sample
Rate

48Khz 48Khz 48Khz

Sound Capture
Radius

16.4 feet 10 feet 10 feet

Cost $64.00 $9.90 $24.90

We chose the Mic Array v2.0 due to its 4-microphone configuration for sound
triangulation. We were easily able to detect the angle of the sound relative to the
forward position of the drone, and navigate to the source until we found that the
sound was behind the drone.

3.3.5 Batteries (RL)
The Venom 4s, 30C, 3200mah, 14.8V Lithium Polymer (LiPo) battery was
chosen to be utilized for the system power source based on several factors. LiPo
batteries are popular batteries commonly used for drones. This is because the
LiPo batteries have a softer outer casing, making the overall weight of the battery
significantly lighter compared to other types of batteries, and thus makes this
type of batteries an ideal choice for drone power supplies.

LiPo batteries are also capable of storing and delivering large amounts of power,
which is ideal since the motors of the UAV will require a good amount for power
to maintain thrust for takeoff and flight maneuvering. LiPo batteries have a high
energy density and discharge rate which is essential for good power output. Lipo

 41

batteries are typically rated by four key specifications; the charge capacity
(usually displayed in mAh), the discharge or C-rating (usually displayed with a
number followed by the letter “C”), the cell count (usually displayed with a
number followed by the letter ”S”), and the supply voltage (usually displayed in
volts [V]). Thus, the Venom LiPo battery has 4 cells, with a discharge rate of 30
columns, a capacity of 3200 milli-amp hours, and a supply voltage of 14.8 volts.

The Traxxas 2890X was another possible LiPo battery to be considered for the
drone project. It has a 6700mAh charge capacity which is slightly higher than the
Venom. The number of cells and the output voltage of the battery is the same as
the Venom as well. However, the battery’s discharge rate is less than the Venom,
being at 25C compared to the Venom’s 30C discharge rate. The Tarras 2890X is
also more costly than the Venom, making it economically less desirable as it
makes budget management a bit difficult.

When comparing the two batteries, and taking into consideration the amount of
power that will need to be delivered to each component, as well as the total flight
time for the drone, the Venom was decided to be the better choice of the two.
The Venom is expected to be sufficient to provide the power needed, at a lower
price.

Proper precautionary steps need to be taken when it comes to dealing with LiPo
batteries. Overcharging of such batteries can cause the battery to explode and
catch fire, thus proper knowledge of charge time for the particular battery is
important. It is also important to ensure the batteries’ do not have any form of
damages as it may cause the battery to explode and possibly lead to severe
injuries.

During our project build, we estimated the battery to supply us with 7.7 minutes
of flight time at an 85% discharge level. We were planning on ordering a higher
capacity battery to swap out between rounds, but since the competition was
cancelled, it was no longer necessary. Additionally, we were unable to procure
additional parts from the university once spring break began.

3.3.6 Motors (RL)
For this project, the Cobra CM-2206 KV=2400 motors were chosen, due to its
compatibility with the electronic speed controllers (ESC) and battery Components
range from 2-5 cell, which meets the power demands and thrust requirement for
the drone. The specs of the motor were determined by the mechanical and
aerospace engineering students of the team.

We found that the motors we chose worked well enough for what we needed, but
they needed to run at a fairly portion of their maximum power in order to keep the
drone in flight. Because of this, the MAE team determined that newer, more
powerful motors were to be ordered along with a higher capacity battery would

 42

increase flight time. However, we were unable to obtain these due to ordering
using our sponsor funds being suspended because of the pandemic.

3.3.7 Wireless Communication (HS)
We will use wireless communication to interact with our drone from the ground
control station and to transmit the video feed. These wireless communications
will consist of WiFi and radio.

3.3.7.1 Router

A router was used to transmit the WIFI signals back and forth between the
drone’s stereo camera and ground monitoring station. The project specifications
require that the drone send camera feed data to device. Having a router means
ensuring a strong secure signal enabling the ability to see what the drone sees
and the data displayed on the OSD as well as targeting obstacles and displaying
the red X on specified targets. We also considered hosting a Wi-Fi hotspot on the
drone, but ended up using a network router as a connection bridge between both
devices due for the greater performance (bandwidth) it provides.

3.3.7.2 Wi-Fi Transmitter

To interface with a designated router and laptop to display the camera feed with
the overlay, the best option would be to connect via Wi-Fi to the on-board CPU
using a USB Wi-Fi adapter. The Jetson nano does not inherently come with a Wi-
Fi module, so this addition will be necessary. The Jetson Nano is a relatively
newer CPU, and the only documented Wi-Fi module that works for it is via USB.
The best option was the Geekworm Jetson Nano Wi-Fi Adapter Dual Band
Wireless USB 3.0 Adapter. It features a 5dBi sma antenna, a Frequency: 2.4GHz
and 5GHz, and a Transmission Power of less than 20dBm(EIRP). This is also
one of the few small, long range dongles that work with Linux based operating
systems.

3.3.7.3 Telemetry Radio

In order to manually control the drone from the ground control station, a telemetry
radio is needed to connect to both the Pixhawk PX4 and the laptop, so it can be
controlled via ground station software. One reliable telemetry radio device is the
3DR Radio Telemetry Kit 915Mhz Air and Ground Data Transmit Module. This
device has one module connected directly to the flight controller,and the other
module connected directly to the laptop via USB. We ended up connecting the
module to our drone remote controller in manual flight, and using Wi-Fi for
autonomous flight.

 43

3.3.8 Optical Flow Camera (CJ)

3.3.8.1 Purpose
An optical flow camera is a camera designed to detect how far points in the
scene have shifted in order to estimate how far the camera has travelled. We
intended to use this camera along with a SLAM algorithm in order to determine
current position and ground speed since we are unable to use GPS. By having
two sources of data for positioning and ground speed, we hope to reduce the drift
that may occur in our SLAM algorithm.

There were two main options for our optical flow camera. The first is to use a
standard camera to get a video feed and then use an optical flow algorithm on
the drone computer to calculate horizontal distance travelled. The second option
is to use an already made optical flow module that will calculate the distance
travelled on a separate computer.

Because we believe that an optical flow algorithm running alongside our object
detection algorithm will significantly reduce the number of updates to the flight
each second, we intended to use a pre-made board designed to output horizontal
movement information.

3.3.8.2 PX4FLOW
The PX4FLOW is an optical camera designed to be interfaced with the PixHawk.
It provides data on the horizontal distances covered by the drone. It updates its
shifted position at a rate of 400Hz. In addition to the optical flow camera, it also
has a built-in gyroscope to detect motion. This gyroscope is redundant due to the
gyroscope in the PixHawk, but may be useful if we find it to be more accurate.
The P4FLOW interfaces with the PixHawk using an I2C bus as seen in Figure 17
below, and the drone computer can get this information using serial
communication with the PixHawk.

Figure 17: I2C Interface for Pixhawk [2]

 44

The PX4FLOW also comes with a sonic distance sensor. This distance sensor is
used by the PX4FLOW to estimate the distance from the ground to improve the
estimation of velocity and distance travelled. If this sensor is accurate enough,
we can use it as our main height sensor. This is discussed in the next section.

As we attempted to get our drone to hover in a single spot using the PX4FLOW,
we were having issues with the drone making erratic adjustments and with the
motors cutting out for no discernable reason. While trying to troubleshoot the
problem, we discovered the PX4Flow was sending incorrect data to the flight
controller. For this reason, we decided to get a HereFlow, which is described
below.

3.3.8.3 Hereflow Optical Flow/Lidar
A HereFlow is designed in much the same way as the PX4Flow. It uses a
camera to determine how much the drone is moving based on the movement of
pixels in the camera. It also contains an accelerometer to assist in this
determination. The HereFlow uses a LiDAR distance sensor to determine height.
This LiDAR distance sensor was fairly weak as outdoors it was only supposed to
work up to half a meter. Indoors it was able to work up to 6m. While trying to
integrate it, we had similar issues with correction as when we were using the
PX4Flow though the data from the sensor seemed to be more correct. These
corrections were not as extreme however, and we used it in our final build.

3.3.9 Time of Flight Distance Sensors

3.3.9.1 Purpose (CJ)
The use of a Time of Flight (TOF) distance sensor is imperative for calculating
the distance between the drone and the surface beneath it as well as the
distance between the drone and obstacles horizontal to it. TOF distance sensors
measure the amount of time it takes for a signal to travel from the emitter,
bounce off and object, and return to the receiver. The TOF distance sensors will
be used in two different manners. First, a distance sensor facing downward will
be used to estimate the height above ground level of the drone. Second, the
drone will use sensors placed at the front, back, and two sides to detect any
obstacles close to the drone.

We require a height sensor that will give us an approximate height of up to at
least 20 feet. Since we are required to stay below 45 feet, we know if we lose the
signal from the distance sensor that we will have to return to a lower height.
Additionally we want a sensor that will operate at a frequency of at least 10 Hz to
ensure that our computer is supplied with height data regularly.

As for the horizontal object detection sensors, we needed a range of at least 5
feet to prevent the drone from coming too close to objects and a frequency of at
least 10 Hz for the computer to receive distances at a regular pace.

 45

3.3.9.2 HC-SR04 Ultrasonic Range Sensor (HS, CJ)
This very cheap and economical sensor provides 2cm to 400cm of non-contact
measurement functionality with a ranging accuracy that can reach up to 3mm.
Each HC-SR04 module includes an ultrasonic transmitter, a receiver and a
control circuit. This sensor can interface directly with the Jetson Nano via GPIO
pins or via the GPIO pins on an Ardino microcontroller.

In order to get the output distance, a trigger pin must first be raised for 10µs. The
length of time it takes for the echo pin to rise after the trigger is the amount of
time it took for the signal to travel. Using the speed of sound, this was used to
calculate the distance of the object it bounced off from.

3.3.9.3 HRLV-MaxSonar EZ4 on the PX4FLOW (CJ)

This distance sensor uses ultrasound to determine the distance to an object and
is attached to the PX4FLOW. The PX4FLOW provides distance information
digitally via an I2C connection to the PixHawk flight controller. The height data
can then be retrieved by the drone computer via a serial link. The PX4FLOW is
planned to be installed downward in order to approximate the horizontal distance
the drone is travelling, so using the ultrasonic sensor attached to it would require
no additional hardware if used for height detection. The sensor is able to operate
at 10Hz and has a range of 5 meters.

3.3.9.4 TeraRanger One (CJ)

This sensor uses an infrared beam to determine the distance and is designed to
interface with a computer via UART or I2C. The sensor requires 12V, so a
separate voltage regulator may be necessary in powering it. Additionally, the
UART output voltage is 5V, which is too large for the Jetson Nano. If UART
communication was to be used, the output voltage would have to be reduced.
I2C communication is used, the output from the I2C conversion cable would
provide the output in 3.3V, which is accepted by the Nano. However, this sensor
is able to operate at 1000 Hz and provide a range of up to 14 meters, which is
better than the other two sensors.

3.3.9.5 TF Mini LiDAR (HS, CJ)

Within 12 meters the product can measure 100 times within one second and
produce centimeter-level reliable data. This sensor can interface with a computer
or directly to the pixhawk flight board. The upside to this sensor is that it runs off
of 5V, which can be taken directly from the Jetson Nano Dev Board. Additionally,
it outputs 3.3V which can interface with the Nano without the need for voltage
division.

 46

3.3.9.6 Part Comparison and Selection (CJ)

First, we will consider the needs for the height sensor. Table 9 shows a
comparison of all of the distance sensors being considered. The HC-SR04
ultrasonic sensor is inexpensive, but the implementation of this device will require
creating a function that is able to send and receive signals from the GPIO pins.
Additionally its range means that we will not be able to tell how high the drone is
when it is above 4 m (13 ft). The HRLV-MaxSonar sensor works on the same
principle as the HC-SR04, but communicates via USB, making it significantly
easier to interface with. The sensor works between 30cm and 5m (16ft), which
gives us 3 feet more range than the HC-SR04. Additionally, the HRLV-MaxSonar
comes with the PX4FLOW, meaning that we would not have to spend any
additional money to acquire it.

Table 9: Distance Sensor Comparison
 HC-

SR04
HRLV-
MaxSonar EZ4

TeraRanger
One

TF Mini
LiDAR

HereFlow
LiDAR

Operating Voltage 5V 3.3V 12V 5V 5V

Average
Operating Current

15mA 2.5mA 50mA 120mA 100 mA

Average Power
Consumption

0.075
W

8.25mW 0.6W 0.6W 0.5 W

Sensor Range 2cm to
400cm

30cm to 500cm Up to 14m 30cm to
1200cm

80 mm +

Range Resolution N/A 1 mm 0.5 cm 1 cm N/A

Field of View 15° ~3° 3° 2.3° 27°

Update Rate 40Hz 10Hz 1000Hz 100Hz 50 Hz

Communication GPIO USB UART, I2C UART CAN

Price $3.95 $109.99
w/PX4FLOW

$59.50 $39.95 $49.99

The TeraRanger One is the most expensive option and would require a regulator
to provide it 12V. Additionally, the UART signals required for the UART are too
high, so an I2C adapter would be necessary. This I2C adapter would provide us
the flexibility to either interface with the Nano or the PixHawk. If the hurdles of
this device are overcome, it has the longest range (14m) and the fastest
operating frequency (1000Hz). The TF Mini is twenty dollars cheaper than the
One. It operates off of 5V and uses 3.3V UART signals. This means that it would
be very easy to attach to the Jetson Nano. It provides a fast operating frequency
of 100Hz and works up to 12m.

 47

Based on our analysis above, we originally chose to go with the HRLV-MaxSonar
on the PX4FLOW for our height sensor. Though it does not have as great of a
range as the TeraRanger One or the TF Mini LiDAR, the range is suitable for our
needs and will not require the incorporation of additional hardware. Once we
determined the performance was not high enough for our position hold feature,
we experimented with the HereFlow Optical Flow/Lidar sensor.

For our horizontal distance sensors used for object detection, we needed
sensors that are fairly cheap due to our need to our need to have five of them.
For this reason, we plan to use four HC-SR04 sensor. Since these sensors
require the use of interrupts in order to be used most accurately, we plan on
created a printed circuit board (PCB) with a microcontroller on it to manage the
sensors and send data back to the Jetson Nano via a UART connection. This is
to prevent interrupts on the Nano from interfering with processes integral to the
flight of the drone.

3.3.10 Drone Starter Kit (RJ)
To begin developing our drone, we needed to prototype our implementation on
an existing products to speed up development. The advantage to using a drone
starter kit is that we don’t need to build a frame from scratch, which would add to
the amount of time spent designing and testing our drone. However, we would
need to readapt our starter kit for our final product down the road, and between
the starter kit and readapting our drone to meet the final requirements, a
significant amount of our budget would be spent. Our primary motivation for the
beginning of our project is to make sure that we can begin collecting data for our
object recognition algorithm, and to ensure that the flow of data operates
correctly.

The first drone starter kit we looked at was the LHI 240mm starter kit that
includes the frame, 4x brushless motors, Omnibus Flight Controller, and a
camera. The transmitter, receiver, and battery were not included and would need
to be purchased separately. This kit cost $189.00, but we were not able to source
it domestically in accordance with UCF’s purchasing policy. Additionally, the
basic flight controller and camera may not have been suitable for our
autonomous functionality, and we may not have been able to reuse these parts
for our final drone project.

The next kit we looked at was the DJI Flamewheel F450. This kit includes the
frame and the motors, but not the flight controller, camera, receiver, transmitter,
or battery. At $239.99, this drone kit is substantially more expensive than the
initial kit we were looking at while coming with less components.

The benefit to using our own flight controller and camera during our prototyping
phase is that we can directly transfer our implementation to our final product with
minimal reengineering since we would not need to determine how to transfer our

 48

data to another platform. Another added benefit of going with the DJI
Flamewheel F450 is that DJI is a reputable company in the U.S., and there is a
lot of documentation and support for their products.

The project requirements specify that the drone cannot exceed a size of 1.5 ft x
1.5 ft x 1.5 ft, however the F450 would exceed this requirement. For our final
implementation, considered modify the frame to comply with the size
requirements, and we will build our own frame. Though we would be able to
reuse the motors, flight controller, and cameras from our prototype into our final
build, we would be challenged with having to convert the frame into one that is
compliant with our engineering requirements with a limited remaining budget.

In addition to our constrained budget and strict size requirements for our drone,
we became pressed on time as we did not have the authorization to order parts
using our allocated funds until mid-November. Instead, in collaboration with the
mechanical and aerospace engineering (MAE) group members of our team, we
decided to split the prototyping of our project into separate categories and began
working towards each category before receiving authorization to order parts.

In one category, the MAE team began designing a frame from scratch that would
meet the size requirements, and then fabricate it using 3D printing. Creating a
modular design for the different components of the drone would allow us to easily
modify individual parts and quickly reprint them if we found that the design
needed to be modified to mount a new component. We would also be able to
quickly repair our drone in case it crashes and cracks some components in the
frame. In the second category of our prototyping, the ECE team would begin
configuring the CPU for object detection and autonomous maneuvering.

We, the ECE team, began collecting sample data through images of the
obstacles taken in various locations, lighting conditions, angles, and heights so
that we could begin building a dataset to train our algorithm. Additionally, we
began working on configuring the flight stack and determining how raw sensor
data can be translated into meaningful instructions for the movement of the
drone. Once we began to combine both categories of prototyping, we we planned
to tweak our design and tune our implementation to reach our final product
without a significant amount of last minute reengineering during the second
semester.

We had a preliminary drone frame to begin our prototyping that was 3D printed
using polyethylene terephthalate glycol, also known as PET-G. The preliminary
design made by our MAE team is shown below in Figure 18-A. PET-G is
advantageous because it has strong impact resistance while also having some
flexibility. We expect that the drone may crash during testing, so having strong
impact resistance is crucial for our design. Moreover, the preliminary design is
modular, meaning that the base and individual arms of the frame can be
disassembled and easily replaced as necessary. We did not have to pay for the

 49

printing of our frame, but we estimate the PET-G filament to cost approximately
$25.99 per kilogram. The weight of the frame is 292 grams, making our estimate
cost to be $7.59.

Figure 18-A: Preliminary 3D printed drone frame

In case the frame turns out to be unsuitable (due to design flaws, manufacturing
errors, or size constraints) by the time we begin prototyping by the start of the
spring semester, then we would will order a frame-only kit to build our drone
upon. However, we found that the initial design was good and we were able to
begin prototyping right away. The only major changes that needed to be made
were mounts to house our components. The final 3D printed drone frame can be
seen in Figure 18-B.

 50

Figure 18-B: Final 3D printed drone frame with components

The frame size is 330 mm (which is roughly 12.99 inches), as measured
diagonally from the placement of the motors. Since our project cannot exceed
18” x 18” x 18”, that means our maximum diagonal distance, including the tips of
the propellers, is 25.46 inches. For this frame, the recommended propeller size is
6 inches, which means roughly 3 inches of the propeller will hang off each corner
of the frame, bringing our diagonal distance from 13 inches (frame only) to 19
inches (frame plus motors).

Though we are allocated around 6 extra inches for our maximum allowed size, it
is difficult to find a frame kit that is in the 350-450 mm range. Moreover, a smaller
sized frame provides an advantage that we could capitalize on, allowing us to
maneuver the drone in and around obstacles with a larger margin of error. The
USAQ Alien 300 mm frame costs $26.95, which would not be a significant
burden to our budget. However, this was unnecessary as we were able to use
our team’s developed frame.

3.3.11 Part Selection Summary
Table 10 below summarizes the chosen parts for our initial project prototype. We
received the flight controller and PX4Flow sensor free of cost as it was donated
to us by our sponsor. However, we included the cost as a reference to our
budget.

 51

Table 10: Initial Build Parts Summary and Prices

Part Price

NVIDIA Jetson Nano $99.00

Drone Frame $7.59

PixHawk Flight Controller $72.99

Geekworm Jetson Nano WiFi $18.99

Venom 4s 30c $69.99

Intel D435 Camera $179.99

PX4FLOW $109.99

CM-2206/17-V2 Multirotor Motors (4) $91.96

3DR Radio Telemetry Air and Ground
Data Transmit Module

$22.99

ReSpeaker Mic Array v2.0 $64.99

Though these parts were used for our initial prototype, they were carefully
chosen based on technology we want to use for our final build. Therefore, most
of these parts will be transferred to our final project and we will be able to save
time by not switching to and needing to reimplement our autonomous
functionality for different parts down the road. Since we will be reusing these
parts, the amount taken out of our prototype budget will end up being the cost of
components that were not used in the final build. Therefore, we were significantly
under budget at the beginning of prototyping.

3.4 Possible Architectures and Related Diagrams
(RL,RJ)

Figure 19 below outlines the basic architecture of the drone. The ‘Sensors’ box
includes the camera, microphone, and sonar detection. Raw data is sent to the
CPU, and used to determine where the drone should move to next. The CPU will
send the data inputs to the flight controller (similar to a remote control input).
Finally, the flight controller directly controls the motors using electrical signals.

 52

Figure 19: Conversion of data to electrical signals

3.4.1 Emergency Stop (RL)
The emergency stop system for the drone will primarily be sent from the ground
computer via a wireless router. The drone CPU will receive this command and
execute the preprogrammed emergency landing procedure where it will stop all
lateral movements of the drone and reduce power to the motors rather than
completely shutdown power. This will cause the drone to make a soft landing.
Once the CPU has determined the drone is completely grounded, it will
completely shutdown all power systems. Figure 20 below demonstrates the
emergency stop sequence.

Figure 20: Emergency stop process (RL)

 53

3.4.2 Data Flow (RL)
Certain sets of data will be transferred between the ground computer and the
drone CPU. Figure 21 shows the different data transferred between the ground
computer and the drone CPU. Some data will be transferable back and forth
between the devices, while most will be transferred in one direction.

Figure 21: Datapath between ground computer and drone CPU (RL)

3.4.3 Obstacle Recognition and Maneuvering Sequence (RL)
The CPU processes image data received from the camera and use it to identify
obstacles amongst objects it detects in the images. Object recognition coding is
be implemented into the system’s programming. It then pairs a set of
maneuvering instructions that are preprogrammed into its coding and specific to
each type of obstacle. There are three types of obstacles the system will need to
be able to recognize and pair the maneuvering sequence with. Figure 22 shows
the steps of the CPU image processing and maneuvering instructions pairing.

 54

Figure 22: CPU obstacle identification and maneuver pairing (RL)

3.4.4 Power Distribution (RL)
Power supplied from the lithium polymer battery will be distributed to various
components for the drone; it was originally planned to be done via the printed
circuit board (PCB). However due to the high current of the motors/ESCs (30A),
we were advised not to do this and purchased a power distribution board (PDB).
The distribution of power from the battery to the various components through the
PDB is shown in Figure 23.

 55

Figure 23: Power flow distribution chart (RL)

3.4.5 Acoustic Waypoint (RL)
Acoustic signals will be used to mark waypoints for the drone to detect and land
for a brief period, then takeoff and continue on with the course. The drone
system will be equipped with a microphone that will be used to detect the
acoustic signal. The CPU of the system will receive the signal from the
microphone and process it to determine whether a waypoint is located nearby or
not. Once the CPU identifies the acoustic waypoint signal, it will then instruct the
system to get within a 3 feet proximity of the signal and execute a landing
sequence where the drone will land near the waypoint for 5 second, then takeoff
and continue with the course. This process is demonstrated in Figure 24 below.

 56

Figure 24: Acoustic signal processing of CPU and waypoint landing sequence

execution (RL)

3.4.6 Component Connection (RL)
The components of the drone are to be interconnected with each other. The
major components will be connected to the CPU, while some of the components
will be connected partly to the CPU and partly to the PCB. the connection web of
all the components of the system is demonstrated in Figure 25 below.

Figure 25: Component Connection Web (RL)

 57

4.0 Related Standards, Regulations, & Realistic
Design Constraints (RL)

4.1 Standards (RL)
It is vital to understand the constraints for the project as these can impact the
choice of specific parts or lead to delays if the constraints are not met. Operating
within limitations is a vital part of the engineering process, as you must meet
certain criteria such as physical design limitations (size, weight, shape, etc.) and
environmental limitations (use of non-toxic materials, rugged for outdoor
environments). Design constraints can also be software related, such as a
limitation to the use of a certain programming language. For this project, several
limitations were set by our sponsor Lockheed Martin to ensure a baseline for all
teams competing to make the most efficient autonomous drone.

In addition to this, there were many standards to consider for this project. There
are also many government and city regulations to take into account when
planning and constructing for the UAV. Law enforcement regulations become
particularly important when it comes to the testing phase of the project as certain
permissions need to be taken for outdoor testing. Permission from UCF
authorities would also be required to conduct testing on school grounds. If the
product is not built or found to not meet the required standards, obtaining such
permissions may become difficult.

4.1.1 Dimensional Standards (RL)
The UAV is required to be within a certain bounded dimension limit. This limit
was imposed due to the size of the obstacles used and the spacing clearance
between the obstacles. This standard incorporates a safety concern as there
may be a risk of collision with the obstacles which may be hazardous to an
extent. This standard is imposed more so from the sponsors rather than state
regulations. This standard needed to be closely observed and maintained as it
reduces the amount of space available on the frame for the CPU and other key
components that will be necessary for the UAV to operate.

4.1.2 Coding/Programming Standards (RL and HS)

While writing the code for the particular algorithm to be used for the system,
several coding standards will need to be used. The code will need to be easily
readable and understandable by other users who may be analyzing the code. As
such, it will be important to choose an algorithm that will be compatible with all
components to be used for the UAV, while still maintaining the coding standard
guidelines. [5]

 58

According to the article “Coding Standards and Guidelines”, the purpose of
having coding standards are:

● To maintain a uniform and consistent appearance of codes written by

various engineers
● To make the code easier to read and maintain, and reduce complexity
● To make error detection easier and help make the code reusable
● To increase programming efficiency and encourage global practices

Some programming standards mentioned in the article include:

1. Limited use of globals: this standard identifies the data types that can be
declared as global

2. Standard headers for different modules: This standard emphasizes on the
importance of having a standard format and information for headers of
different modules. In general, the header should have the following:

● Name of the module
● Date of module creation
● Author of the module
● Modification history
● Synopsis of the module and its functions
● Functions supported in the module and respective I/O parameters
● Global variables utilized by the module

3. Naming conventions for local variables, global variables, constants, and

functions. This standard includes the following:

● Use of meaningful and understandable names for variables
● Local variables should be named with lowercase letters, whereas

global variable names should start with capital letters
● Avoid using digits in variable names
● Function names should be written in lowercase letters
● Function name should concisely describe the reason for its use

4. Indentation: Indentations are used to increase the readability of the code.

Indentations may be of the following forms:

● Having a space after a comma between two function arguments
● Nested blocks need to be properly indented and spaced.
● Proper indentation need to be utilized at the beginning and end of

each block
● All braces should start from a new line with the code following the

end of the braces also starting from a new line

 59

5. Error return values and exception handling conventions: Functions that
encounter an error condition should either return to 0 or 1 for simplifying
the debugging.

6. Avoid coding styles too difficult to understand: Complex code makes
maintenance and debugging difficult and expensive

7. Avoid using identifiers for multiple purposes: Using an identifier for
multiple purposes may confuse the reader.

8. Code should be well documented: Proper commenting should be used to
increase ease of understanding.

9. Length of functions should not be very large: Long functions are difficult to
understand and should be broken into smaller ones for smaller tasks.

10. Avoid using GOTO statements: GOTO statements make the program
unstructured and difficult to debug.

4.1.3 Video resolution standard (RL)
For the camera(s) to be used the EIA-1956 standard and RoHS compliance may
be used to determine the accurate camera resolution required for this project. To
be able to detect an object and be able to differentiate between a redundant
object and an obstacle, the camera resolution needed to be good enough to an
extent. Also, to be able to calculate the distance of the system from the obstacle,
a clearer image received by the CPU from the camera will improve the
calculation accuracy. Recent improvements in depth perception cameras may be
useful to meet this standard as they typically tend to have good resolution.

4.1.4 IEEE Standards (RL)
IEEE P2025.2 standard for consumer drones: privacy and security; focuses on
drones that are available in the market for consumer or commercial uses. This
standard specifies requirements, systems, methods, testing and verification for
consumer drones to preserve the privacy and security of people and properties
within range of the drones (Definition adapted from the IEEE standards website).
This standard however, does not affect this project as the drone being built will
not be for any sort of consumer or commercial use, and thus will not be available
in the market. [13]

4.1.5 UL 3030 – Standard for Safer Flights (RL)
The use of drones have become increasingly popular in the world today, and are
readily used for accomplishing many tasks including performing tasks that would
be otherwise time consuming and expensive without the use of drones. Drones
are also used for activities that reduces risks and can be operated from a safe
distance. With all the uses for drones, it is important for such devices to be

 60

equipped with reliable batteries that pass all safety standards, safe mode
capabilities, and a safe load, charger and battery coordination. The UL 3030
Standard for Unmanned Aircraft Systems, addresses electrical system
requirements for UAVs operated by trained pilots. This new standard covers
commercial and tactical applications (Definition adapted from the UL website) [A].
This standard is useful for the project as it is focused on ensuring the safety of
the system’s power supply and load coordination. [8]

4.1.6 IPC PCB Standards (RL)
Institute of Printed Circuits (IPC) standards are the electronics-industry-adopted
standards for design, PCB manufacturing and electronic assembly. Every step of
PCB design, production, and assembly is associated with an IPC standard
(definition adopted from “History and Basics of IPC Standards” article by Nick
Davis). According to the article, the first version of the IPC-A-600 standard,
known as the “Acceptance of Printed Boards” was published in 1964. In 2008, to
address the lead-free solder problem, IPC got together with the Electronic
Components Association (ECA) and Joint Electron Device Engineering Council
(JEDEC) to develop IPC-J-STD-075 standard known as the “Classification of
Non-IC Electronic Component for Assembly Processes. [24]

For this project, the team needed to closely follow the IPC standards for the PCB
to be used the electronic signals sent to the other major components, as the IPC
standards mainly apply to printed circuit boards (PCB). Figure 26 shows a flow
chart of the IPC PCB standards list. Following the standards properly will
eliminate the risks of electrostatic discharge which can completely destroy a
circuit.

The IPC standards typically incorporate:

● Product documentation
● Design specifications
● Specifications of materials to be used for the PCB
● Performance scope of the PCB
● Solder requirements for electronic assemblies
● Acceptability of electronic assemblies
● Requirements and acceptance for cable and wire assemblies
● Inspection and testing acceptability standard

 61

Figure 26: IPC Standards List, image courtesy of IPC Association [B]

 62

4.1.7 IEC60950 (Relevant Power Supply Standards) (HS)

This standard is intended to ensure that products are insulated correctly in order
to prevent serious injuries from occurring due to fire hazards, electrical shock, or
high temperatures. A hazardous voltage according to this standard is any AC
voltage that is larger than 42.2 volts peak or any DC voltage that is larger than 60
volts. These apply as long as the circuit is not a limited current circuit which is a
circuit that is guarantees that a hazardous current will not be reached even if
there is a fault. This standard separates equipment into three different classes
with each being isolated through different methods:

1. Class I: For class I devices, shock protection is performed by grounding
to protective earth or using basic insulation material to separate live wire.
The protective earth grounding must have a certain colored insulation
(green, yellow, or clear) and must not contain a switch or fuse.

2. Class II: Class II devices, unlike Class I devices, do not require a
protective earth ground and only requires that shock protection be
performed by utilizing reinforced insulation (double insulation)

3. Class III: Class III devices must contain a secondary circuit known as a
safety extra-low voltage (SELV) circuit. This circuit makes it impossible for
dangerous currents to be produced by the equipment and the SELV circuit
should be separated from primary circuits and other dangerous voltages
by two other types of insulation or protection.

Hazardous voltages are stopped by utilizing insulation of which there are different
types. The most important types of insulation specified in IEC 950 are the basic
insulation, supplementary insulation or operational insulation.

1. Basic Insulation: Protects against shocking hazards by utilizing a single
level of protection. There is no minimum thickness for this insulation type
however, there must be a secondary protection layer such as a protective
earth ground.

2. Supplementary Insulation: A layer of protection that is often utilized as a
failsafe for basic insulation. This type of insulation must be at least 0.4 mm

3. Operational Insulation: This type of insulation is the minimum level of
insulation needed for the equipment to work correctly and are not meant to
provide any protection from fire or shock hazards.

Ultimately, IEC 950 outlines the basis for hazard protection for power supplies
and demonstrates the importance of clearance as well as solid insulation in
ensuring the safety of the user of the product. These standards are vital in
protecting the consumer from short circuits and shocks which could in turn cause
fires. The reason this standard was discussed was due to the importance of

 63

power supply protections. This can be viewed in the relatively recent
“Hoverboard” fires or Samsung Galaxy Note 7 fires that were caused by
overheating power supplies and batteries. [7]

4.2 Drone Regulations (CJ)
This project will fall under Part 107 of Title 14 of the Code of Federal
Regulations. [20] This is because our project is not being flown purely for hobby
or recreational purposes and weighs less than 55 pounds. Under part 107, all
drones over 0.55 lbs must be registered with the FAA. Drones can be registered
online using the FAADroneZone. In addition, drone pilots must also register and
be certified by the FAA. This process includes passing a short test to
demonstrate an understanding of the laws governing the use of drones.

Once a drone is registered and a pilot certified, a drone can only be flown without
prior approval in uncontrolled airspace known as Class G airspace. While in
Class G airspace, pilots are free to fly between 400 feet and ground level,
assuming that all other regulations are followed. Flight in any other airspace
requires approval beforehand. Controlled airspace typically exists around
airports, stadiums, and areas of national importance, and one can ensure they
are flying in uncontrolled airspace by looking at a map online.

In addition to staying below 400 feet above ground level in uncontrolled airspace,
drone operators must comply with the following regulations:
● Pilots must do a preflight check to ensure the drone is safe for operation.
● Pilots must keep the aircraft in sight and must fly only during the day.
● Pilots must fly at or below 100 mph.
● Pilots must not fly over people other than themselves.
● Pilots must not operate a drone from a moving vehicle.

Most of these regulations will be easy to follow as the drone will not be flying fast
far off from the ground. The major regulations that we must be careful to follow
are the need to register the drone, to have a certified pilot, and to ensure that we
are flying our drone in uncontrolled airspace.

Our drone is be able to be autonomously controlled, so we had to take
precautions to ensure that the pilot will be able to take control of the drone at any
time in order to comply with the above regulations. This will be implemented
using two different switches that can throw the drone into our E-Stop mode or our
manual mode. Additionally, we can implement an algorithm that can detect when
the drone has lost communication with the ground station and force it to land or
return.

The drone was primarily flown by a licensed member of our team (MAE division),
and we also conducted some indoor tests.

 64

4.3 Realistic Design Constraints (RL)
Constraints are conditions that place limitations on the designing of products.
This section will focus on the different constraints that will affect the design of this
project.

4.3.1 Economic Constraints (RL and RJ)

Economic constraints are constraints that place a financial constraint on the
project. This project is sponsored by Lockheed Martin, and the customers of the
project has a budgetary limit which places a restriction on the amount of finances
that can be utilized towards the development of the project.

The project required the team to design and create a drone that is fully
autonomous. To ensure the final product is designed to meet the expectations of
the customers, a prototype of the drone was needed to be developed first before
assembling the final finished product, and present it to the customers.

The team is provided with an initial funding of $550 to develop a prototype of the
autonomous drone. The customers (sponsors) have certain specifications that
will need to be met for the final product. These conditions needed to be
implemented into the prototype before being incorporated into the finished
product.

Due to the limited funding of the prototype, certain components needed to be
adopted into the final product to stay within the required budget of the customers.
To be able to get the essential components for the drone, the drone kit was not
considered to be used for the development of the prototype. Instead, the team
decided to utilize a three dimensional printer to design the frame for the drone.
This approach was more cost effective as the drone kit that was found to be most
suitable for the project cost a little over $200. Whereas, designing and printing
our own frame would cost the team about $10 per frame.

This approach allowed the team to utilize the funding to obtain more reliable and
better quality parts for the drone, and was crucial to the successful completion of
the project. The extra funding saved from creating our own frame left more room
to get a better and more powerful CPU for the drone system. The team was able
to utilize a better camera with depth perception capability, and be able to obtain a
better battery with a higher charge capacity.

The team was allowed a fund of $1100 to be put towards the finished product. If
any component was to be reused from the prototype model on the final product,
the cost for that component was deducted from the budget provided for the final
finished product. This is an economical constraints as it takes funding away from
the final product. As such, limitations are placed on certain added components
that may be utilized to better the completed autonomous drone. Such

 65

components may include sensors that may be incorporated to improve the
drone’s object detection and maneuvering capabilities, components to improve
the drone system’s reaction time, and so on.

4.3.2 Time Constraints (RL and RJ)
Time is a big factor to consider in the design and development of a product.
Engineers are often faced with various deadlines that need to be met for
successful completion of a project. In the case of this project, the time constraint
is no different.

This project began in late September 2019 once we were assigned our groups,
and will be due in April 2020 to fulfill our sponsor’s completion deadline as well
UCF’s graduation requirements for the Senior Design 2 course. In addition to this
late Spring deadline for the completion of the final project, we have milestones to
complete in-between then. By December 2019, we must have a completed
outline of our preliminary design to review with our project sponsor, and to submit
as part of the requirements for the Senior Design 1 course. By March 2019, we
hope to have a finalized design of our drone, and to use the remaining time for
tuning and performance improvement.

Time has continued to work against our team since the very beginning we have
taken on the project. The team was not assembled in a time consistent period
which pushed back the progress of the team orientation. Another setback was
the late introduction of certain project requirements that was specific to the
customers expectations. These setbacks includes the incorporation of certain
functional range limits such as angle of sight for the drone cameras, flight height
limits, and so on; some of which are still yet to be clarified.

There were delays in getting access to the funding account. The team was not
able to get access to funds until November 2019. This caused a delay in placing
orders for parts that were required for the project. This delay in funding access
will also cause further delays as the parts to be ordered will need time to be
delivered, and there will be loss of time during shipping and handling for the
parts.

Prototyping for the drone for the first phase was aimed to be completed by the
end of January 2020. With the following next two phases, at the very least, are
expected to be executed in one to two week intervals following each phase. This
milestone leaves the team with very little time to make any error corrections and
adjustments to be implemented on the prototype for the next testing phase.

The prototype testing is expected to be completed by March 2020 and is
expected to be ready for presenting to the customer by no later than April 2020.
These milestones and due dates do not leave much time for extensive testing,
and all necessary updates and adjustments will need to be completed before the
presentation due date of the project to the customers.

 66

4.3.3 Environmental, Social, and Political constraints (RL and RJ)

Setting the right environments for the project is very important and places a
considerable level of constraint on the drone’s testing and demonstration
conditions. When prototyping our initial design and developing our final design,
we will have to perform several test flights to verify, debug, and improve the flight
capabilities of the drone. We will also need to perform test flights to tune the
object and waypoint recognition that will allow the drone to command itself
autonomously.

Testing the drone in different environmental settings may significantly affect
certain components of the system. For instance, if the drone prototype is being
tested in a very noisy area, it may be difficult to test the microphones ability to
detect the acoustic sound waves. Ensuring the right environmental setting is
obtained is also important in the event the drone CPU is unable to differentiate
between objects and begins to approach random objects. This may pose a level
of danger as there may be risks of injury and damage to public property.

For environments involving the outdoors, effects of natural entities also needed
to be considered. Such entities may include bright sunny days, rainy weather,
strong wind gusts, wildlife (birds and other animals), pets that are not on a leash,
and so on. To avoid such effects of nature, the emergency stop feature, or the
manual override feature will need to be implemented into the drone system as a
safety precaution.

We made sure to perform test flights in an environment suitable for drone flying.
We cannot fly the drone over private property, and in the case of flying the drone
on UCF property, pre-notified written approval from the university would need to
be obtained before any outdoor testing can be conducted. The UCF police and
relevant law enforcement authorities will also need to be notified, and written
permission would need to be received before any outdoor testing can be
performed. Moreover, we must make sure that we are not flying in controlled or
restricted airspaces, as defined by the Federal Aviation Administration (FAA).

Socially, we needed to remain mindful of the perception that people may have
towards flying drones. Primarily, individuals may feel uncomfortable being in an
area with a flying drone, and may fear the risk of bodily injuries. Furthermore,
since our drone has a camera and microphone, individuals may fear that they
were being observed and recorded and may feel their privacy is being invaded.
Therefore, we needed to remain mindful of these concerns when testing our
drone. The best way to avoid these issues is to test in an open and secluded
outdoor area, or indoors in a private area. Social perceptions affect the type of
area that can be chosen to test the drone as it influences the type of environment
to be used.

 67

The use of unmanned drones have become increasingly popular, especially
among government agencies. Law enforcement are known to use drones as
speed traps, surveillance, pursuit of people observed to be suspicious, and many
other tasks. Drones have also become popular for military use and are commonly
utilized for a variety of tasks. Due to accidental events leading to loss of lives by
military owned drones, the public's opinion towards drones are not the most
favorable. Furthermore, the public’s fear of government agencies using drones to
invade privacy, has caused the public to gear against the idea for drones being
allowed to fly freely. The team will need to keep the public’s perspective attitude
towards drones in mind while working on developing and testing the drone.

To overcome these challenges, we primarily tested the drone on private property
owned by a teammate, and indoors.

4.3.4 Ethical, Health, and Safety Constraints (RL and RJ)
The development of an autonomous drone involves a certain ethical factor,
especially if the drone is equipped with recording capability. As the developers of
an autonomous drone with such capabilities, the team will need to be aware of
the ethical limits of the project and design the drone with this particular constraint
in mind. [10]

Our drone will have the ability to record pictures, videos, and audio as these are
needed for autonomous flight capability. We must make sure to only use data
that is required by our algorithms to process the flight control of the drone. For
the images used as a template for the object recognition algorithms, we avoided
capturing images, video, and audio of individuals that do not consent to being
recorded. In the event that we record such an individual, we planned to blur or
entirely remove faces and other personally identifying features.

The dataset we create for our object recognition algorithm only needs to include
the obstacles that will be used in the course; therefore, sanitizing the images of
personal information will not affect our ability to program our drone. We may
need to store some live flight footage from the drone, but we will similarly sanitize
recordings that we need to keep and delete recordings that we will not use.

Aside from the concern of invasion of privacy of unsuspecting pedestrians, which
will also be put into consideration during the assessment of environmental
constraints, other ethical factors will also need to be considered during the
development of the project. One such concern is the reproduction of coding for
the system. Any form of coding the team decides to utilize and incorporate into
the project software design will need to satisfy the coding guidelines standards.
These standards are mentioned in details in section 4.1.2. The need to follow this
and other standards also fall in this ethical constraints section. As engineers
aiming to develop a successful product, these standards will need to be closely
maintained. As such, restrictions and limitations on both the design and the
functionality will be imposed on the drone’s systems.

 68

The drone’s electrical components is primarily be powered by a lithium polymer
battery. This type of battery tends to explode if it is overcharged for an extended
period of time. Due to the nature of this type of battery, certain precautions need
to be taken when using this battery. If not properly handled, the battery may
cause property damage and bodily injury to anyone who may be nearby. To
ensure the battery if not overcharged, the charging process of the battery will be
closely monitored and timed. If necessary, we planned to implement cooling
systems to prevent overheating of the components. However, we found that this
was not needed.

Since we are building a drone from scratch, and because it will be designed to
work autonomously, we will create a fail-safe system to allow us to immediately
kill power to the drone’s motors on demand. The reason why this is important is
to prevent the drone from injuring an individual and/or causing property damage.
If we suspect that the drone is behaving erratically or it becomes completely
uncontrollable, we will have the ability to bring the drone down to ground level
almost immediately.

The drone will also be equipped with an option to take over manual control. The
emergency stop command and the manual control command will be enabled
through the ground computer. The drone will be equipped with a WiFi transmitter
and receiver and will receive commands for emergency protocols using this
system.

People have always been concerned about health concerns produced by radio
signals, television signals, WiFi and radio transmissions, and several other
entities that emit radiation through transmitted signals. Communication signals
that will be transmitted between WiFi and radio devices used for this project is no
exception this form of radiation emission. Although the levels of radiation that will
be generated by the drones communication system will be extremely low to
cause any type of long term health concern, the team will still need to be mindful
of the possibility that a member of the public may not be comfortable near our
project.

We also needed make sure that these communication systems do not interfere
with already established systems that others may be utilizing. For example, we
must ensure that our drone does not interfere with the WiFi networks when
testing at home, UCF, or Lockheed Martin’s facility, as it could prevent others
from accessing their services.

Another significant health and safety concern relates to the material of our PCB.
We have the option to have our PCB fabricated using lead, which is considered a
toxic material. Though we would only need to handle the PCB when soldering
components and attaching it to our drone, some people may not feel comfortable
being around a device that has a potentially exposed lead PCB. Moreover,

 69

California’s Restrictions on the use of Certain Hazardous Substances (RoHS) in
electronic devices prohibits lead from being used. [3] The primary focus of this
regulation is to prevent the release of heavy metals into the environment once
they are disposed of. Though Florida does not have a similar restriction on
electronic devices, using a RoHS compliant PCB would be environmentally
beneficial.

4.3.5 Manufacturability and Sustainability Constraints (RL and RJ)
This project required using many “off-the-shelf” solutions for various components.
However, the team still needed to determine how to make all of the components
work with each other and place all the components together on the frame. Initially
the team’s plan was to design small sub mounts, which would then be attached
to a pre-manufactured frame for prototype drone. However, due to economic
constraints, the team decided to use a three dimensional printer to design the
frame from scratch.

Another reason for the team’s decision was the dimensional restriction that was
placed on the team by the sponsors. The sponsors required the drone to be no
more than 1.5 ft x 1.5 ft x 1.5 ft. because of this size constraint, the team was
facing some challenges in obtaining the correct size frame on the market
shelves.

When creating our own frame, we needed to make sure the material of the frame
is strong enough to support the weight of all the components and avoid being
damaged by the forces in flight. We would also like the drone to be strong
enough to avoid being damaged from an occasional fall or collison.

The other major component we needed to have manufactured is the printed
circuit board (PCB) which we originally planned to also use as a voltage regulator
for the various onboard components. We need to create a design that will be
small enough to be easily installed to our frame, but large enough to easily solder
the electrical components as needed. Several laboratory simulation and testing
for the various required circuits will need to be performed before having them
implemented on to the final PCB design. The voltage regulator circuit for the PCB
will need to be thoroughly tested to ensure it is able to regulate and distribute the
correct amount of current and voltage required to supply power from the power
source to the various components.

The center of the drone’s autonomous system, and perhaps the most crucial
component of the entire system that brings all the other components together, is
the CPU. The CPU will need to be able to interface with all of the components
and process the data that it receives from each to make logical decisions. It acts
as the brain of the drone and will maneuver the system through the course. It will
also be able to communicate with the ground computer and transmit and receive
data and commands while it navigates the drone through the course. Constraints
involving the CPU includes the compatibility of other components to be used in

 70

junction with the CPU, such as cameras, microphones, WIFI modules, and
sensors.

The cameras for the drone will be the eyes for the system. It will help the system
locate objects and allow the processor to process the images received and
identify obstacles the system needs to approach and perform various
preprogrammed maneuvering sequences. The will also help the system
determine the distance of the drone from an obstacle, and estimate the time of
arrival to the obstacle. As such, the camera will need to be equipped with depth
perception feature and it will need to be compatible with the CPU. However, the
bigger constraint may be the ability for the camera and the CPU to be able to
identify the type of obstacle the camera detects.

Other constraints involve the sensor’s ability to detect acoustic waypoints that will
be strategically placed along the flight path to mark temporary landing zones, and
approaching dangers set by the “mine” team whose goal is to take down our
drone and cause it to crash.

Overall, these constraints, along with the other constraints mentioned in the
subsections above, placed limitations of various types on the project. They
greatly affected the designing process of the drone, and the team needed to take
every constraint into consideration to maintain the quality of the final product and
ensure successful completion of the project.

5.0 Project Hardware Design Details

5.1 Initial Design Architecture (HS)
Our initial design architecture involves two main components: the CPU and the
flight controller. We planned to connect digital sensors to the CPU and write a
program to analyze the sensor data. Once the sensor data is analyzed, and a
direction for the movement of the drone is determined, then the CPU will send a
signal to the flight controller. The flight controller can then take this input data and
use it to directly control the motors, also accounting for the sensors on the flight
controller such as the barometer, accelerometer, magnetometer, gyroscope in
order to provide smooth, level, and stable flight. An initial outline for our
architecture can be seen below in Figure 27.

The power distribution board (PDB) connects to the battery and regulates the
voltage for the various components. The PDB has several output wires, including
full voltage to the electronic speed controllers and 5V to several of the electronic
components such as the flight controller and Jetson Nano. Without the power
distribution board, we would not be able to individually control the voltages going
to the respective components.

 71

Figure 27: Initial Design Architecture for autonomous drone (HS)

5.1.1 Power System (RJ)
The power system begins with the battery that we connect to the drone. The
battery will be higher voltage than what most of the components required, except
for the motors. However, we will be able to step down the voltage using one or
more voltage regulators depending on the exact voltage requirements for each
component. Between the battery and the voltage regulator we planned to include
an emergency switch, which will implement our “E-STOP” feature where in the
case of an emergency, the drone is immediately stopped. This switch, when
open, would essentially disconnect the battery to the entire drone and turn off all
components, including the motors. However, we found utilizing a software
command to be more convenient.

Our drone had multiple components that need to be powered in order to
implement flight and autonomous functionality. These components include: the
electronic speed controllers, the motors, the CPU, the camera, and the
microphone.

The electronic speed controllers serve as throttle for the motors, controlling the
flow of current into the motors, which determine operating speed. The
specification for the electronic speed controller we selected is that it is directly
connected to a battery ranging from 2S to 6S. Each lithium polymer (LiPo)
battery cell outputs 3.7 V, and the S refers to the number of cells a battery has.
Therefore, our selected electronic speed controller can directly handle a voltage
range of 7.4 V to 22.2 V. We have selected a 4S (14.8V) battery; therefore, we
do not need to implement an intermediary solution to power the electronic speed
controllers and motors.

 72

However, the chosen CPU (Nvidia Jetson Nano) cannot accept such a large
range of voltages. From the specification sheet, the Jetson takes a 5V input at 2-
4 A. We need to create a voltage converter in order to power the CPU. The
amperage specification depends on the operating mode of the CPU, and only
includes the main components on the board; it does not include extra peripherals
that will also be powered, such as USB devices.

The typical operating mode of the Jetson only uses 2 A, while utilizing advanced
features will bring it up to 4 A. The camera and microphone that we have chosen
have a USB interface, and that is how we plan to interface between the CPU and
those sensors. USB 3.0 specifications state that each port supports up to 0.9A,
therefore, we will consider that we need an extra 2A when designing our DC/DC
power converter. We do not expect to utilize the 4A mode on the CPU, nor do we
expect our USB devices to each draw the maximum amperage provided by the
USB ports. Therefore, designing a 14.8V to 5 V supporting up to 6A will be
sufficient to power our CPU and sensors.

The Readytosky Pixhawk flight controller that we selected also requires a 5V
input with up to 3 A capability, which means we should be able to use the same
DC/DC converter we designed for our CPU without any additional design.

An important consideration when designing our DC/DC power converter is the
range of voltages that the battery will output at a given time. The 3.7 V per cell
figure is considered a battery’s ‘nominal’ voltage, which is its resting voltage.
However, the actual voltage at any given time may be higher or lower. LiPo
batteries are fully charged at 4.2 V per cell, and should not be discharged below
3.0 V per cell, as it can severely damage the battery. Therefore, for our original
plan for DC/DC converter utilizing a 4S battery would need a 12 V to 16.8 V at up
to 6 A.

We initially utilized Texas Instruments’ Webench Power Designer to input these
desired specifications and select a design that would fit our requirements. When
selecting a design, our main concerns are with power efficiency, bill of material
(BOM) count, and BOM cost. Power efficiency is an important consideration
because we would like to maximize the flight time of our drone.

Bill of material count refers to the number of components required to implement
the DC/DC power converter circuit. We would like to minimize this number
because it would aid in assembling the printed circuit board (PCB), particularly
when we attach the various circuitry components. A lower BOM count makes the
PCB easier to assemble, and reduces the chances of failure of the component.
Lastly, we need to consider BOM cost. Since we are on a strict budget, we seek
to minimize our costs when designing this PCB. Minimizing our PCB cost also
gives us the flexibility to order a spare PCB, in case we damage our original
board during assembly or testing.

 73

The design we felt that best fits our requirements is the Texas Instruments’
TPS56637 circuit. A schematic of the circuit is shown below in Figure 28 below.

Figure 28: Texas Instruments TPS56637 design, courtesy of Texas Instruments

[C]

The TPS56637 has an average efficiency of 93.9%, a BOM count of 11, and a
BOM cost of $9.23 making it an excellent option for our project.

The power efficiency of the circuit fluctuates based on the input voltage and the
output current draw. Figure 29 below shows the efficiency of the circuit as
functions of input voltage and output current. Our power efficiency will lie in the
region between the red (12V) and gray (19V) lines, as those will be the operating
conditions for our battery as to not damage it.

Figure 29: TPS56637 Power Efficiency, courtesy of Texas Instruments

We also utilized Autodesk EAGLE to design our PCB. Though we already have
the schematic, we will need to determine the placement of circuitry components
ourselves and design the PCB so that it will be small enough to fit securely on
our drone, but also be large enough for us comfortably work on. Our PCB will be

 74

using surface mount components, rather than through-hole components, as they
are cheaper and faster to install.

The free version of EAGLE we are utilizing allows for an 80 cm2 design with two
layers of wiring, which is more than adequate for our purposes. We will attempt
to minimize the distance of wire traces between the two components and use 45°
bends in order to reduce electrical interference in our circuit.

By default, the Jetson Nano is powered by a micro-USB connector. However, the
micro-USB only supports 2 A @ 5V, which would likely not be able to support all
of our components. The Jetson Nano also includes a 5.5 mm/2.1 mm barrel jack
connector which can be used to power the board at a higher amperage, which
will be needed for our application. Our PCB planned to include soldering pads for
the output voltage, and we will solder in a wire connected attached to a barrel
jack connecter so that we can power the CPU. The barrel jack cable will cost
$2.42. The components from our BOM, as well as the barrel jack cable, are
available from Mouser.

EAGLE has the capability to export our board file into a Gerber file format, which
is the standard utilized by the PCB fabrication industry. The manufacturer of PCB
that we will use is JLCPCB as they are able to manufacture the board within 1-2
days and offer reasonably priced express shipping options. JLCPCB has a
minimum order size of 5 pieces, however, this is suitable as it gives us extra
circuit boards to use as spares in case we damage any. The price of an
individual PCB with a lead-free finish is $7.30.

The total cost for our initial PCB design utilizing DC/DC power converter will
include the BOM for the circuit, the barrel jack cable, and the fabrication price of
the board for a grand total of $18.95.

When we receive the product and complete the installation of all required
components, we planned test the output voltage using an oscilloscope. The
reason for this is to ensure that the board is working as expected, and providing
the voltages necessary to power our components. Since the components we
have selected are expensive, we want to ensure that we do not damage
anything. However since we were advised to buy a PDB specifically designed for
drones, we elected to power all of our components using that voltage regulator
instead of splitting it between our PCB.

5.1.2 Wireless Communication System
Another required system for our drone is its communication system. We would
like to be able to control the drone manually if desired, and we must be able to
view a live video feed from the drone. We connected a wireless transmitter to the
drone CPU, as that is where we will be processing all images and audio. Taking
the feed from our written program was helpful in debugging and analyzing the

 75

performance of our drone, while also fulfilling the requirements set out by our
project sponsor.

With the wireless transmitter, the drone can connect to a router that will also be
connected to a laptop. The laptop will be able to receive the video feed through
the on screen user interface. Using WiFi will be a suitable hardware solution for
this communication system as it will have enough range to cover the obstacle
course during the competition at Lockheed Martin’s facility, if it occured.

5.1.3 Interfacing with Sensors (CJ)
Each sensor must be able to interface with the Jetson Nano. The Nano will use
the information from the sensors in order to determine where to go and to avoid
obstacles. This section will be used to ensure that each of the sensors will be
able to interface with the Jetson Nano Development Board. Additionally, we will
be using a microcontroller to interface our multidirectional ultrasonic sensors that
will be used to determine how close the drone is to a nearby object.

5.1.3.1 USB
There are a total of four USB 3.0 ports on the Jetson Nano Dev Board. These
ports interface with the Intel RealSense D435 camera, the Geekworm Jetson
Nano WiFi module, the ReSpeaker MicArray, and the custom PCB. The USB
ports may require extra power depending on the connected peripheral, so we
have accounted for that extra amperage in our initial PCB design.

5.1.3.2 UART
There is a single UART port on the Jetson Nano pins. This means that only a
single device will be able to use this, and we have two devices that could use it.
First is the TeraRanger One distance sensor, and the second is the PixHawk.
Since communication with the PixHawk is so vital and the TeraRanger has other
ways to communicate, the PixHawk will be chosen to use the port. Additionally,
we will be using UART to interface our microcontroller with the CPU.

5.1.3.3 I2C
Since the TeraRanger One is unable to use UART communication, the sensor
will be able to connect via I2C. This will require a special adapter for the sensor,
but it is fairly inexpensive.

5.1.4 Microcontroller Architecture (RJ)
We planned to attach five (later reduced to four, removing the bottom sensor)
HC-SR04 ultrasonic distance sensors to our drone as “bumpers” so that we can
the drone’s proximity to other objects during flight, as seen below in Figure 30.
While we could connect the sensors directly to our Jetson Nano, it is preferable
to use a microcontroller to manage those sensors as reduces the complexity of

 76

the entire system by dividing it into layers. Then, the microcontroller can interface
directly with the CPU to give position data for flight decisions.

Figure 30: Top View of Five Ultrasonic Sensors Attached to Drone

For our five sensors, we only need one digital pin to send the trigger signal, but
five additional (digital or PWM) pins to receive the echo signal from each
individual sensor. We considered two microcontroller architectures: the Texas
Instruments MSP430 and the Arduino Uno Rev3. While either architecture would
be suitable for our purposes, we chose the Arduino architecture because there
was more documentation and projects posted online that we could use as a
reference.

We built our own PCB, because we do not require all the components on the
development board. Building our own PCB allows us to minimize our form factor
by combining DC/DC converters and the microcontroller chip, as well as fulfilling
our electrical and computer engineering senior design requirements.

The Arduino platform has several chips that we can use, with the main difference
being the number of pins. We considered the ATmega256 and ATmega168. The
ATmega256 has 54 digital input/output pins, while the ATmega168 only has 14
digital input/output pins. While the cost difference in negligible, we determined
that using the 14 pin chip would make the soldering the components significantly
easier. Figure 31 below shows the chip and DC/DC converter on a single PCB.

 77

We only need 6 pins from the ATmega168 (1 pin for the trigger, 5 pins for the
echo). We are planning an 8 pin header, where the other 2 pins will be connected
to VCC and ground. We have also added a status LED to ensure that power is
flowing through the circuit.

We were able flash the processor from the Arduino Uno Rev3 development kit
that we will use to debug and test the code before ordering the PCB using the
ICSP interface. This allowed us to verify functionality of our code, and make any
last minute changes to the schematic if needed.

Figure 31: Schematic including Atmega328pu chip with LED indicator

A major components required to get the Jetson Nano to communicate with the
PCB was a logic level shifter due to the fact that the Jetson Nano uses a 3.3V
bus, while the PCB uses a 5V bus. Without this logic level shifter, the signals
may not be registered. We originally intended to implement this into our PCB,
however due to time constraints caused by the lengthy university ordering
process and delays caused by the pandemic, we elected to use a standalone
module separate from the PCB.

5.1.5 Nano-PixHawk Interface (CJ)
We originally planned the Nano-PixHawk interface through a UART interface.
According to the ArduPilot website, the UART TX, RX, and GND pins from the
Jetson Nano can be connected to the TELEM2 port on the PixHawk. Once the
pins are connected, the Baud rate on the PixHawk serial port two must be set to
921600, and the serial protocol on the port set to 1, allowing MAVROS
communication [2]. However, for convenience, we elected to utilize the USB
ports on both devices to communicate between them.

 78

5.2 Subsystems (RL)

An electronic system typically incorporates several smaller systems working
together; a network of systems. These smaller systems are normally referred to
as subsystems. Each subsystem offers its unique contributions through its
specific characteristics, and these systems communicate with each other to
some level to enable the entire network of systems to function as a whole.

5.2.1 Power system (RL)

The power system consists of the battery, the power distribution board (PDB),
the sensor PCB, flight controller, electronic speed controller (ESC) (which is
connected to the motors), and the CPU system. The PDB was originally to be
developed by the ECE students of the team, however we were advised to buy a
drone specific one as to not damage any of our expensive parts. Due to the
various port requirements for all the different components that will need to be
connected to the PDB, it will need to be specifically designed to hold and support
all the connectors. Since each component will have specific voltage
requirements, several voltage regulators will be incorporated into its circuit
configurations.

The battery will be connected to the PDB via an XT60 connector. The PDB will
distribute power to the various components, either directly to the individual
component, or to the system that the component is connected to and is a part of.
The battery’s connector port is an XT60 type, as such, the PDB will need to have
at least one XT60 type port [11]. With that, we were able to solder connections
from the 5V pads to all of our necessary devices.

For this project, the team will use four ESCs, each of which had a brushless
motor connected to it. The ESCs were be connected to the PDB for this project,
and much like the connection for the flight controller, the ESC can also be
connected in one of two ways. The first way to connect the Esc to the PDB is to
solder the terminals of the ESC to the pad ports of the PDB. Unlike the six wires
used to connect the flight controller, the ESC would only have two wires, and
hence soldering the contacts will not be difficult. However, soldering the terminals
made the connection permanent, unless the wires were re-soldered to detach.

To make the power terminals easier to attach and detach as needed, a second
method could be utilized through the use of bullet connector ports. The bullet
connectors can be soldered to both the PDB pad ports, and the ESC power
terminals. After that, the connectors can be connected and disconnected as
needed.

To connect the motors to the ESCs, the same modes for connecting the ESC to
the PDB applies. There will be three wires from each ESC to connect to each of
the motors. The orientation of the wires is not of significant importance. If the
wires are connected a certain way, the motor will rotate in one direction. To

 79

change the direction of rotation of the motor, any two of the three wires
connected to the motor from the ESC can be swapped. Just like the ESC to PDB
connection, the wires connecting the motor and the ESC can be soldered
together, making it a permanent connection. However, similar to the ESC power
connection, bullet connectors can also be utilized to connect the wires of the
motor, making it easy for attaching and detaching the motors as needed. Figure
32 below shows the schematic for the hardware configuration of the PDB to the
ESCs and flight controller.

Figure 32: Power distribution schematic for battery to PDB to ESC and motors,
courtesy of Painless360 [D]

The PDB will be connected to the sensor PCB with wires soldered to the power
port terminals of the board. Supply voltage for the PCB will be regulated by the
voltage regulator circuit on the PDB and will supply 5 volts to the sensor PCB.
Connectors will not be considered for connecting the PCB to save room on the
PDB, as too many connectors may take up space on the board and add
unnecessary weight.

The PDB was also be connected to the Jetson Nano via a barrel jack whose wire
was soldered to the PDB. The voltage to be delivered through the barrel jack will
be 5 volts. The camera, microphone, and the Wi-Fi module will be connected to
the CPU’s USB ports and will receive power from those ports. As such, these
components will not need to be connected to the PDB for power. The necessary
voltage and current will be regulated and supplied to these components by the
CPU.

5.2.2 Signal Processing and Data Transfer System (RL)

The CPU will be connected to all the other components of the drone either
directly or indirectly through other components. It was to process all the signals it
receives from the input devices and components and transmit signals to various
output devices and components. The CPU will also receive data from the flight

 80

controller regarding battery charge levels which the flight controller will be
monitoring.

The CPU would receive input data from the camera, the microphone, the sensor
PCB, and from the ground computer through the WIFI module. The CPU can
transmit data to the flight controller, which will transit data to the ESC, which then
transmits data to the motors. The CPU will also transmit data to the ground
computer through the WIFI module.

The camera (Intel RealSense D400) was to be connected to one of the CPU’s
USB ports. Images will be captured by the camera and sent to the CPU. The
CPU was to receive the images and process them for objects. It can then
distinguish the objects that are not part of the background of the images. Once
the objects are distinguished, the CPU will identify if the objects are one of the
three types of obstacles (ring, single pylon, or double pylon) required to approach
using the image recognition coding. The CPU will then determine the distance of
the obstacle and transmit that data to the ground station through the WIFI
module.

The CPU is also able to determine an estimated time of arrival to the obstacle
and the confidence level and transmit that data to the ground station as well. It
repeats these steps for every object and obstacle, and place a marker on each
obstacle, in the form of a red “X” symbol and map the course the drone would
take and send the data to the ground station.

Using SLAM the CPU was originally intended make a record of the course layout
to enable the system to keep track of the flight path and create a map of the
course. The CPU would later use this data to return back to the starting point. All
image data the CPU receives from the camera could then be transmitted to the
ground station where it can be live streamed. However, due to a change in
requirements, this was no longer necessary.

The CPU is also able receive audio signals from the microphone. The
microphone is connected to the CPU through one of its USB ports. Once the
CPU receives an audio signal, it filters the signal, using a bandpass filter
incorporated into the coding. The filter will allow frequencies of 0.5kHz to 1kHz to
pass, while blocking noise of other frequencies. The CPU can then use this
filtered data to detect acoustic sound wave, which will be used to mark
waypoints, and send the data to the ground station for logging and mapping.

The CPU will also receive signals from the sensor PCB. The Sensor PCB will be
connected to the CPU through UART. Every time the sensors detect an object, it
can then send an interrupt to the CPU. The CPU will then use the signal and the
image data it receives from the camera, and process a course of action to be
taken, which will be predetermined by the system’s coding.

 81

If the signal received is processed and found to be relevant to an obstacle,
waypoint, or mines set by the mine team, the CPU transmits the data to the
ground station for debugging purposes.

The CPU send signals to the flight controller for drone maneuvering instructions.
The flight controller will be connected to the UART port of the Jetson Nano. Each
time the CPU processes a signal received from the camera, and determines an
obstacle to be detected, it send signals to the flight controller to move closer to
the obstacle and perform the preprogrammed maneuvering sequence specific to
the obstacle detected.

The CPU also send signals to the flight controller for landing sequences in the
event it detects a signal from the microphone that is processed to be from an
acoustic waypoint. The flight controller will also receive instructions for evasive
maneuvering from the CPU if the CPU receives signals from the sensors due to
mines. The CPU will constantly be sending signals to the flight controller for all
directional movements.

5.2.3 Wireless and Ground Station System (RL)
The CPU sends all data it processes to the ground station through the WIFI
module. The WIFI module will be connected to one of the Jetson Nano’s USB
ports. Communication between the ground station and the drone's system will be
done through the WIFI module. The ground station records all data it receives
from the drone system and stores it for viewing and flight logging.

The live video feed is viewable from the ground station and the flight path and
mapping will be recorded by it as the drone progresses through the course. The
ground station will also be used to transmit the emergency stop signal to the
drone system, and the CPU transmits a signal to the flight controller to perform
the emergency landing sequence.

The ground station will receive measured flight data such as distance to an
obstacle the drone is approaching, the time the drone will arrive to the required
proximity of the target, the confidence level of the approach, as well as the
marker to be placed on the obstacle detected. The ground station was to place
that marker on the course map being created. The ground station will also place
other markers on the map such as markers for the starting point of the course,
any waypoints detected along the course, and any mines detected. The ground
station then communicates this data with the drone system to enable it to keep
track of the path taken and to find its way back to the starting point once the
course is completed.

 82

5.2.4 Drone Telemetry System (HS)
The telemetry subsystem is to be utilized solely for the manual control mode for
the drone. It was originally planned to consist of the laptop for the ground control
station, a ground station software application such as QGroundControl, a
gamepad such as an xbox 360 game controller, a telemetry radio module for the
laptop, and a telemetry radio module for the Pixhawk PX4 flight controller itself.
However, during testing, we found that it was easier to SSH into the drone to
directly interface with the computer and to run our scripts.

6.0 Project Software Design Details
This section details the design of the software for the DOMINANCE project. The
software is broken up into two sections: drone software and ground station
software. The purpose of the drone software is to enable the drone to fly
autonomously using the various sensors onboard the drone. The drone is also
responsible for receiving commands from the ground station and for sending
video feed overlaid with detected obstacle data information. The purpose of the
ground station is to send commands to the drone and to display the sent video
feed sent from the drone. This section describes both groups of software and
their communication. (CJ)

6.1 Drone Software

6.1.1 Drone Software Overview (CJ)
The drone software is broken up into two sections: the drone computer software
and the flight controller software. The drone computer software will be divided
into groups called nodes, and the inputs and outputs of these nodes will be
managed by the Robot Operating System (ROS). We used some open source
nodes to help us interface with our sensors and our flight control board, and we
will create some custom nodes to perform tasks such as acting as the primary
controller for the system. The flight controller software selected was Ardupilot.
The main purpose of the Ardupilot is to carry out movement commands from the
drone computer and to send movement data to the drone computer. A diagram
showing the flow of data between components of the drone software can be seen
in Figure 33 below.

 83

Figure 33: Drone Software Model (HS)

6.1.2 Drone Computer OS and Framework (CJ)

6.1.2.1 Drone Computer OS
The drone computer OS is Linux4Tegra(L4T). This Ubuntu based operating
system is provided by NVIDIA and is specifically designed to run on the Jetson
series hardware. Along with L4T, NVIDIA provides JetPack, a group of libraries
and APIs that are designed to run on L4T and the Jetson hardware. These
include TensorRT that can be used to improve object detection and the OpenCV
library. In addition, there are many computer vision libraries available for use with
our GNU-Linux based operating system. With these benefits in mind, we see no
need to choose a different operating system.

6.1.2.2 Robotic Operating System (ROS) Framework
On our drone computer, we chose to use ROS Melodic, which is the only ROS
version compatible with our L4T OS. ROS facilitates communication between
different sections of code known as nodes. When a node wants to send data to
other nodes, the node acts as a publisher and sends a message to a topic. The
message, which contains a data structure, is then sent to any nodes that are
subscribers to this specific topic. The data received can then be used by the
receiving node.

In addition to the ability to publish or subscribe to topics, the ROS also enables a
node to send a request to a node and wait for a reply. This effectively acts as a
way for nodes to call a remote procedure. A diagram of how message passing
and service invocation works can be seen in Figure 34 below.

 84

Figure 34: ROS Diagram (from ROS Wiki) [22]

6.1.3 Drone Software Nodes (CJ)
In this section, all the ROS nodes located on the drone computer are detailed.
Where there are already developed open-source nodes that can be used, we
describe what they are and how they need to be configured. Where there is no
available node that can be used for a section, we detail how the node can be
designed and what libraries we plan on using.

6.1.3.1 Camera Node
Intel provides a node called realsense-ros that is used to produce a ROS node
wrapper for the D400 series camera. [12][19] This will enable the camera to
automatically send messages to a list of topics once the node is started. These
topics can then be subscribed to by the dependent nodes. The main topics that
our software will be using will be the raw color image for image recognition and
the raw depth image for calculating distances to objects.

The provided Intel node is not created for ROS Melodic, and there are no
supported versions of the L4T OS for the Jetson Nano that can support other
versions of the ROS. [21] We expected that this may cause some integration
issues and that we may have to build the node code ourselves on our Jetson
Nano. However, the node worked on our system out of the box.

6.1.3.2 RetinaNet
The RetinaNet node processes the RGB image from the camera and uses it to
identify all objects in the image. The node receives an input image from the
camera and then use TensorFlow Lite to run a trained RetinaNet model. This
produces an output list of each found obstacle. This list will include both the type
of obstacle that is found and the coordinates of the bounding box of the obstacle.
This information is then published for use by the Distance Estimation node to
determine the distance to these objects and to choose the closest one.

The RetinaNet model also needed to be trained on hardware other than the
Jetson Nano as the Nano does not provide enough computing power to train one
in a reasonable amount of time. We intended to use a either UCFs Newton

 85

cluster or a paid online service such as Google’s Cloud TPU to create our
models, but then decided to run it on a teammember’s personal computer.

We ended up using SSD MobileNet V2 during prototyping, because we found
better resources online. Additionally, though slightly less accurate than
RetinaNet, we primarily needed the speed it provided. We followed a similar
training process as what RetinaNet would require, and after the model was
trained, it was then moved onto the Jetson Nano.

6.1.3.3 Distance Estimation
The distance estimation node on the drone computer has two major functions.
First, it will calculate the distance from the drone to each of the obstacles
detected by the RetinaNet algorithm. As input, the distance estimation algorithm
gets the bounding box of each of the detected obstacles along with the type of
obstacle that has been detected. As an output, the algorithm publishes which
obstacle was closest and the approximate distance to that obstacle.

6.1.3.3.1 Node Design & Operation
Once both the bounding box of the obstacle and the type of detected obstacle is
received, the node begins by translating the coordinates from the RGB image to
that of the depth image. This is necessary because the RGB image and the
depth images have different sizes and may be slightly shifted. The exact
adjustments need will be determined during testing.

The node then determines of each obstacle distance based on the type of object
and the portion of the depth image that is within the bounding box. If a ring is
detected, the drone will take the average of the closest 10% of points within the
bounding box. This should allow for the algorithm to detect the approximate
distance to the ring. The main issue that could arise using this algorithm is the
possibility of objects like pylons in front of a ring may be included if a ring is still
detected.

If a pylon is detected, the algorithm takes an average of the depths within the
bounding box. Detecting a double pylon will require that we take into account the
distance between two pylons. This is because double pylons could be confused
by a vision algorithm to be two separate pylons.

In order to remedy this, a list could be made of all the pylons detected by the
vision algorithm. The node will then compare each pylon to every other to see if
pylon is approximately 5 feet away from another. If this is the case, the node will
take the average of the distances away from the drone and add a new double
pylon item to the list of obstacles.

Once the distances to each of the objects is found, the node searches through
the list of obstacles and publish the information for the obstacle that is closest to

 86

the drone. This information will be received by the Drone Controller to be used in
navigation and the Image Overlay node to overlay the video stream.

6.1.3.4 Height Sensor Node
Terabee provides a node that can be used within the ROS to communicate with
the TeraRanger One distance sensor via a USB, UART, or I2C. This node is
compatible with ROS Melodic and can provide distance data to the controller and
the image overlay nodes.

6.1.3.5 Microphone Node
The ReSpeaker Mic Array v2.0 has available for it an ROS node called
respeaker_ros. This node would allow for information from the microphone board
connected by USB to be published to the system. This node is designed for ROS
Kinetic, which means that it may not work with the ROS Melodic that will be
running on the Nano. If this is not the case, we will need to set up a serial
interface through the USB port. This can be done using the ROS node rosserial.
From there, the information can be published to the subscriber nodes in the rest
of the system.

6.1.3.6 Drone Controller
The drone controller acts as the main decision making drone of the hub. The
controller receives data from many different nodes including the RetinaNet,
Distance Estimation, Height Sensor, Microphone, and MAVROS nodes. What the
controller does with that information is dependent on the mode it is currently in.
There are main controller modes: Autonomous Control Mode (which contains
AutoNav, Auto Maneouver, E-Stop, Take-off/Land) and Manual Control Mode.

6.1.3.6.1 Autonomous Control Modes
The Autonomous Control Mode is the mode in which the drone will navigate the
obstacle course. In Autonomous Control Mode, the controller can systematically
switch between autonomous submodes to complete the course.

When placed into autonomous control mode, the drone will attempt to navigate
an obstacle course. The drone if located on the ground will enter into the Take-
Off/Land submode and ascend to a height of 5 feet. Once the drone has taken off
or if the autonomous control mode was engaged mid-flight, the controller will
enter the AutoNav submode. Once the drone has navigated to an obstacle, the
controller will enter the Auto Maneuver submode.

After the obstacle is maneuvered around, the controller enter AutoNav and
repeat the process over. The controller will continue this process until it detects
an entire wall directly in front of it, at which point the drone will attempt to
navigate to its starting position. In the case that the drone battery depletes to 5%

 87

of its maximum charge, the drone will enter E-Stop mode to prevent crashing.
The flowchart of controller’s operations can be seen in Figure 35 below. The flow
chart demonstrates the different decisions used to influence the autonomous
control of the drone via the CPU.

Figure 35: Flow chart of drone operation (RL)

If any interrupt signals from the ground station are received, the current submode
operation will be stopped. The controller will then be switched into either the E-
Stop submode or Manual Control Mode based on the received signal. If switched

 88

into the Manual Control Mode, the drone will stop all horizontal movement and
hover.

Auto Navigation (AutoNav)
In AutoNav mode, the controller will determine how to move based on the
obstacle that is closest to the drone. In this submode, the node enters a loop
where it will continuously receive data from the Distance Estimation. The
Distance Estimation node supplies the distance to the closest obstacle along with
its bounding box, and drone will attempt to navigate to this object based on the
type of object and the location of the bounding box. This is sent by sending new
input commands to the flight controller each loop. In order to prevent the drone
from moving too fast or too rapidly, the drone will ensure that all commands sent
to the flight control board will be at or below a specific threshold.

The AutoNav node then continues in this loop until it reaches a predefined point
in front of the obstacle. The point at which the drone stops is dependent on the
obstacle. For rings, the drone will stop centered in front of the rings about 2 feet
away. For pylons, it will stop centered 1.5 feet from the pylon. For double pylons,
it will stop centered in front of the right pylon about 1.5 feet away. From this point,
the drone will enter Auto-Maneuver and navigate around the obstacle.

While the node is within the AutoNav loop, three events will be checked for at
least once per loop:

● Command is received from the Ground Station
● Detected frequency from the microphone is between 0.5kHz and 1kHz
● Battery power is at or below 5%

Any of these cases will cause the AutoNav to change submodes.

If a command is received from the ground station, the Drone Controller node will
either be switched into Manual Control Mode or switched into the E-Stop
submode depending on the command. Before the drone is switched into manual
control mode, the drone will stop all horizontal movement and hover in place.

At any point during AutoNav, there could be an audio waypoint along the path.
Therefore during AutoNav software will be taking audio input from the
microphones and scanning it at least once per loop to see if a frequency of
0.5kHz to 1kHz is being emitted near the ground. In the case that this occurs, the
drone will stop lateral movement and enter the Take-Off/Land submode to land.
After about five seconds on the ground, the drone will raise, re-enter AutoNav,
and continue on its way. Within ten seconds after taking off again, the drone will
be prevented from landing again due to the frequency in order to allow it to move
past the audio waypoint.

 89

The battery level can be retrieved from the PixHawk via MAVROS. If the battery
power is found to be at 5% or below, the drone will enter Take-Off/Land mode to
land safely before the drone loses all power and drops out of the sky.

When navigating, the controller will ensure that it does not run into anything that
could be in its path. If something is encountered in its path, it will attempt to
navigate around it by rising over it. Detecting interfering objects in the path will be
done using a combination of the map created by the SLAM algorithm and the
four directional HC-SR04 distance sensors placed around the drone. The point
map will be useful in navigating around interfering objects in our path that are not
within our field of view, and the distance sensors will provide additional data that
will help in the case where the SLAM algorithm has not gathered enough data.

The one subsystem of AutoNav that is separate from navigation to obstacles is
the return to home function. In this function, it will take the SLAM map developed
while navigating the course to plot a way back from its current position. The
drone will use its depth camera and HC-SR04 distance sensors to ensure that
any obstacles that are encountered on the way back are avoided. Once the
drone has reached the starting area, the drone will land and turn off the motors.
After landing, the Drone Controller will exit Autonomous Control Mode and enter
Manual Control Mode.

Auto Maneuver
In the Auto Maneuver submode, the controller will navigate around an obstacle
depending on the type of obstacle it has encountered. When in Autonomous
Control Mode, the type of obstacle will be determined by our object recognition
software. When placed into this mode from Manual Mode, the drone will carry out
the maneuver of the passed obstacle type.

Rings will be the easiest to maneuver through as all that is required is
maintaining a forward motion without drifting vertically or to the sides.
Maneuvering around pylons is harder. To do so, we will need to our SLAM
mapping of the environment to ensure that we maintain a safe distance and
complete an entire loop. Once the loop has been made, the drone can then start
searching for the next obstacle.

Maneuvering around the double pylons will be the hardest. This will require for
the drone to make an approximate 90° turn around one of the pylons, locate the
second pylon, navigate near it, and make an approximate 270° turn around it.
During the second turn, it is extremely important that the drone not make the turn
too far from the second pylon or it will crash into the first pylon.

At any point during AutoNav, if a command is received by the Drone Controller
from the Ground Station, the drone will switch into either Manual Control Mode or
the E-Stop submode. Before the drone enters Manual Control Mode, the Drone
Controller will halt all movement and hover in place.

 90

E-Stop
E-Stop mode will be triggered by a button press on a controller connected to the
ground station. The ground station then sends a signal to the drone via wifi.
When the signal is received, the controller will immediately send commands to
the flight controller via MAVROS to cease all horizontal movement and make a
controlled drop to the ground. During this drop, the motors will provide some
upward thrust as to reduce the force of the impact, but will still allow the drone to
drop quickly. Once the drone has landed according to the height sensor and the
movement data from the flight controller, the drone will turn off its motors entirely.
This mode is used in case the drone enters into an unsafe condition and must be
quickly stopped.

Take-Off/Land
The Take-Off/Land submode manages the taking off and landing of the drone.
Take off will occur when the autonomous mode is engaged and the drone
detects that it is on the ground. During Take-Off, the drone will fly to a height of 5
feet and hover. Landing mode will occur when the drone has reached the end of
the course and has navigated back to the starting area. Take-Off/Land is also
used when an audio waypoint is detected by the drone while in AutoNav mode.

When given the command to take off, the drone will use data from the distance
sensor mounted on the bottom of the craft to determine the current height above
ground. Once the drone has reached 5 feet, the drone will hover in place and
enter into the AutoNav.

When given the command to land, the drone will slowly lower while keeping track
of the reported height from the distance sensor. When the distance sensor no
longer properly operates, the drone will continue to slowly lower until the IMU
from the flight controller no longer reports movement.

When an audio waypoint is detected while in the AutoNav submode, a command
to the Take-Off/Land submode will tell it to land the drone, turn off its motors for
five seconds, and then take off back to the height that the done started at. Once
that process is complete, the controller will return back to the AutoNav mode.

6.1.3.6.2 Manual Control Mode
In manual mode, the drone responds directly to any commands sent by the
ground station. The ground station is capable of sending flight commands from
the ground station, enabling a human to control the direction of the drone.
Additionally, the ground station will be able to send commands to carry out a
single specific instance of one of an autonomous submode. For example, the
AutoNav submode can be enabled to travel to an object.

Once the drone has arrived, the drone controller node will have the drone hover
until the next command is received. This function will be useful in testing specific

 91

operational modes. Additionally, while in manual control mode, the operator will
be able to put the drone into Autonomous Control Mode, allowing the drone to be
set up to test a specific portion of an obstacle course.

6.1.3.7 Simultaneous Localization and Mapping
Simultaneous localization and mapping (SLAM) is a method to provide feedback
to the drone to determine its location in 3D space. By using SLAM, we would
have been able to accomplish two things. First, SLAM will be able to keep our
drone from drifting while navigating to and around obstacles. This is
accomplished by determining if the SLAM algorithm is reporting that we are
moving in an unwanted direction and correcting the trajectory. Second, SLAM will
enable us to return to places that we have been using a 3D point map. This will
enable us to more easily maneuver around the obstacles, and will provide us
data to return back to our starting position.

In order to implement SLAM into our project, we would have used the ROS node
called rtabmap. This node is able to take in a depth image and produce the
necessary 3D point clouds. The node explicitly supports our Intel RealSense
D435 camera, so integration into our system should be relatively quick and easy.
Nodes can subscribe to topics from this node to get information on the cloud
map.

6.1.3.8 MAVROS
Micro Aerial Vehicle ROS (MAVROS) is a ROS node that will be used as an
interface to facilitate communication between the drone computer and the
ArduPilot software of the flight controller. MAVROS will receive commands from
the controller node and will process those commands into serial signals that can
be read by the ArduPilot. The ArduPilot likewise will be able to send information
to the drone computer through the reverse method. MAVROS is designed to
work with ROS Melodic and with ArduPilot, so implementing the node should be
a simple process.

6.2 Ground Control Station Software (HS)
A ground control station is a program that would allow us to interact with our
drone during operation. It provides status information on the drone, and provide a
variety of information such as altitude, speed, and trim. We will need to select a
Ground Control Station program to run on the laptop from which we will view the
video feed during the drone competition.

The two most popular ground control station programs are QGroundControl
(QGC) and MissionPlanner. They are similar in available features, however
QGroundControl works on Microsoft Windows, Mac OS, Android, and iOS.
MissionPlanner only works natively on Microsoft Windows, though it may be
possible to run on Mac OS. Being able to view this data from a mobile device

 92

would be helpful, especially if we do any testing outdoors. Therefore, we will pick
QGroundControl as the primary interface between the drone.

QGroundControl provides full flight control and vehicle setup for PX4 or ArduPilot
powered vehicles. It provides easy and straightforward usage for beginners,
while still delivering high end feature support for experienced users. Key features
of QGroundControl include flight support for vehicles running PX4 and ArduPilot,
and mission planning for autonomous flight. QGroundControl runs on Windows,
OS X, Linux platforms. QGroundControl also runs on Android and iOS, allowing
us to easily debug the drone during testing from a handheld device. [4]

Controllers such as the NVIDIA Shield or wired alternatives like the Microsoft
Xbox gaming controllers; Xbox 360 or Xbox One, can be used to control a drone
remotely. In such a scenario, the ground control station machine, or the laptop,
needs to run a ROS joystick node and be able to connect to the ROS master
running on the NVIDIA Jetson.

In the end, we found that it was easier to sufficiently control the drone by SSH
into the computer’s shell to execute specific scripts that we needed. Instead of
using a gaming controller to fly the drone, we could send specific MAVLINK
commands to the drone.

The easiest way to install the required components on a laptop is to use a ROS
Docker container. Using Docker allows you to isolate your host system from any
changes, such as software installation and configuration updates.
QGroundControl will be used in tandem with the ROS Joystick Node to interface
with the Drone Pixhawk and PX4 flight board to enable manual control.
Autonomous control will be handled on the Nvidia Jetson Nano aboard the Drone
itself.

The Drone camera feed will be processed and have image recognition and
overlay done on the Jetson Nano aboard the drone and will then have the
camera feed streamed over Wi-Fi to the router within the ground control station.
The Ground Control Station will have a web browser open to SSH into the
drone’s camera stream via the Jetson Nano’s IP address. This will allow us to
remotely access the camera stream from another computer.

The camera on the Jetson would need to be configured and have its data
broadcasted to the Wi-Fi Router to enable this feature. This will satisfy the
requirement to have a live camera feed from the drone accessible and visible in
the ground control station. Design of the ground control station subsystem is
outlined in Figure 36. (HS)

The drone will be able to communicate with ROS nodes on the ground station by
connecting them on a wireless local area network (WLAN) or on an ad-hoc
network. All computer systems running ROS nodes will be able to communicate

 93

with each other as long as the systems allow bi-directional communication
between themselves and are advertised on the network. This requires that at
least part of our ground control software use ROS nodes, but it will prevent us
from creating a custom node on the drone to send and receive TCP or UDP
packets. (CJ)

Figure 36: Ground control station setup diagram (HS)

6.3 Software: Interference and Failure Modes (RJ)
Ideally, our drone will be able to complete the entire obstacle course without any
issues. However, we recognize that our drone may not be able to perform all
missions successfully. For example, our drone may not be able to identify an
object, may fail at maneuvering through or around an object, and may get
attacked by an adversarial mine. We have outlined several contingency plans in
our code to direct the drone in the event it experiences one of these situations.

6.3.1 Unidentified Object Mode
Due to the field of view that our chosen camera provides, we expect to identify an
object directly after completing a previous maneuver. However, if the drone is
unable to identify an object, it will execute a panning mode to rotate the drone
30° to the left, and then 30° to the right. If the drone is still unable to identify an
object while panning, then it will increase its altitude by 2 feet, and then decrease
its altitude 2 feet (as long as there is at least 2 feet of ground clearance). If the
drone is still unable to identify the object, then the drone creeps forward six
inches while trying to identify the object again. It will repeat this procedure at
most three times.

 94

If the drone is unable to find any object after three attempts, it will fly up to an
altitude of 20 feet and fly back in line of sight to the starting point. The drone will
be able to do this due to the location mapping functionality that will be
implemented. After arriving at the starting point, the drone will descend down to 5
feet and restart AutoNav mode. When the drone begins AutoNav, it will not
repeat an obstacle that it already completed or attempted, which means it will
pursue a different direction (from the starting point) in relation to the previous run.

6.3.2 Flight Recovery Mode
If the drone fails at maneuvering about an obstacle or gets attacked from an
adversarial mine that results in falling out of the sky, the drone will enter Flight
Recovery Mode. The drone will attempt to self-correct its angle of flight in relation
to the horizon when encountering external interference. However, if after three
seconds the drone is unable to restore level flight, the throttle input to the motors
will be gradually reduced to zero so that the drone can land as softly as possible.
Then, in this mode, the drone will first attempt to fly at 1 foot above the ground for
10 seconds.

If the drone is unable to reach an altitude of 1 foot, then it can be concluded that
the drone is either upside down or that it sustained physical damage. In this
situation, the drone will enter a stop mode where it will cease to move until it is
reset. However, if the drone is able to maintain level flight at an altitude of 1 foot
above ground level for 10 seconds, the drone will then rise to 20 feet and fly back
in line of sight to the starting point. Once above the starting point, the drone will
descend to 5 feet and restart AutoNav while pursuing a new path.

6.3.3 Mine Avoidance Mode
In the second run of the competition, we will be flying through the obstacle
course with the presence of an adversarial mine. We know the mine will not
exceed the dimensions of 1.5 ft x 1.5 ft x 1.5 x ft, and that the blast zone will not
have a vertical height greater than 10 ft and a horizontal distance greater than 3
ft. Therefore, when we run the drone the second time through the obstacle
course, the drone will hover 12 ft above the ground, instead of 5 ft above the
ground. This should prevent us from being hit from any projectiles.

We will be using an ultrasonic sensor facing downwards which will give us a
height reading, in addition to the built-in altitude sensor (via the use of a
barometer) in the flight controller. If the flight controller altitude is reading 12 ft,
but the ultrasonic sensor is reading 10.5 ft or less, then we will assume that we
are above a mine. If we are above a mine, then we will not attempt to maneuver
about a detected obstacle that is within 3 ft of the detected mine. Cutting too
close to an obstacle may cause the drone to fall.

It is possible that the mine may have the ability to move. Therefore, if we find that
the mine follows us to all locations, then the drone will not attempt to maneuver
through any obstacles. The drone will land at the original starting point once the

 95

time limit is reached or if the battery power is low, regardless of the number of
obstacles completed. The primary objective during the second round is to protect
our drone, while the secondary object is to complete the course.

6.3.4 Object Proximity Mode
The other four proximity sensors will be placed on all four sides of the
quadcopter, and we will use the readings to determine if we are too close to an
object. The sensors will be connected to a single microcontroller, and we will
continually check that the drone is not about to hit an object that we are trying to
maneuver around. If one of the sensors detect that the drone is two inches or
less from any object, the drone will stop horizontal movement, and drift until the
distance for that particular sensor is greater than two inches. This will ensure that
when we attempt to maneuver around an object, that we have enough space to
do so without damaging our drone.

6.4 Microcontroller Software (RJ)
We will be using the Arduino IDE for the PCB we will use to interface the
ultrasonic sensors with our CPU. We are primarily interested in reducing the
workload and complexity of the CPU software. The microcontroller will read data
from the five sensors. We will set a threshold of two inches for the four
horizontally placed sensors on each side of the drone

The microcontroller will record the data, and if the distance detected is under the
threshold, it will return a unique value over UART to the CPU. A return value of
‘1’ will indicate that the drone is too close to the left side, ‘2’ will indicate that its
too close to the right side, ‘3’ will indicate that its too close to the front side, and
‘4’ will indicate that it’s too close to the backside. When the CPU receives one of
these numbers, it will know what type of corrective action is required to prevent
contact with the drone and the object in question. Figure 37 below shows the
software flow for the microcontroller.

Figure 37: Microcontroller Software flow

 96

7.0 Project Construction and Coding

7.1 Hardware Construction

7.1.1 Needed Equipment and Building Space (RJ)
The primary location of building our drone and testing its components was the
Texas Instruments Innovation Lab and the Senior Design lab. We often needed
materials and equipment that will easily be found in those labs. A significant
portion of building our drone involved soldering components, requiring a
soldering iron. We will also need to utilize a reflow oven to mount certain circuitry
components onto our PCB. Moreover, we needed to utilize an oscilloscope and
multimeter to check the voltage and current flow through various components;
this was severely hindered due to the campus closures during the second half of
the semester.

Once our drone is physically built, we will primarily conduct our tests indoors. The
demonstration facility at Lockheed Martin is indoors, and an outdoor testing
location would require us to recalibrate the sensors when switching locations.
This could cause performance issues that we would prefer to avoid. Additionally,
we would not have to worry about local outdoor airspace restrictions that may
exist.

We attempted to conduct our tests in an open garage at low thrusts to verify
basic flight functionality. For the competition, we have the ability to fly up to 45
feet; however, we do not need to fly that high during testing in order to train our
drone to detect the objects. Moreover, Lockheed Martin has several testing days
that will allow us to fly the drone in their facility, allowing us to test the drone in a
less constrained airspace.

We will needed a space where we can plug in our CPU into a screen and
keyboard. We will primarily work on this using our own screens at home, but we
also have the opportunity to use the monitors in the MAE Senior Design lab.
Alternatively, we ocassionally SSH into the terminal of the CPU.

7.1.2 Hardware Calibration and Configuration
In order for the drone to operate properly, several components of the drone
needs to be calibrated in order record and produce accurate measurements.

7.1.2.1 Electronic Speed Controllers (ESCs) (RJ)
Electronic speed controllers control the flow of current into the motors, thereby
controlling the thrust of the drone. If the electronic speed controllers are not
calibrated, the motors may produce uneven amounts of thrust causing the drone
to drift or flip over. The Pixhawk has an ESC calibration mode where it will run

 97

the motors at full speed (with the propeller removed) to take a baseline
measurement to compare the motors to one another. [9]

7.1.2.2 Depth Camera Calibration (CJ)
The D430 camera software needed to be calibrated to create an accurate depth
image. Out of the box, the camera likely will not be extremely accurate due to
minor inaccuracies in manufacturing. In order to calibrate the camera, we used
the calibration software provided by Intel. [15]

Calibration is done to adjust the rotation and translation values between the RGB
image and the left and the right cameras. This is necessary as we will need to
know how much to shift the bounding box found on the RGB image to the depth
image for calculating distance to an object. Additionally calibration is used to
improve each cameras focus and reduce distortion.

7.1.2.3 PX4FLOW Calibration (HS)
The PX4FLOW Camera will be pointed downwards towards the ground and be
used to assist with SLAM navigation. To calibrate the PX4FLOW Camera,
QGroundControl will be used in tandem with its autopilot feature. With the drone
connected via telemetry, the drone will need its propellers removed. To calibrate,
the drone will be manually rotated in its respective roll axis through a range of
±15 degrees within two seconds. This process will be repeated about the drone’s
pitch axis. This will be repeated Repeat this 10 times to ensure accuracy in
calibration.

Camera data will be referenced with gyroscopic data from the flight controller.
Data will be analyzed in the autopilot software and adjusted to have both data
values matched. Range tests will be calibrated by holding the camera a set
distance from the ground, and measuring it physically and comparing it to its
digital readout on the autopilot software. [23]

7.1.2.4 PixHawk Calibration and Configuration (RJ)
The PixHawk flight controller has several onboard sensors such as the
gyroscope, accelerometer, barometer, and compass. These sensors provide
information about the acceleration, orientation, and altitude of the drone to the
flight controller, which can then be viewed from the ground control station. Since
we will be flying indoors for the competition, we will perform the calibration
indoors to get the most accurate readings. [23]

7.1.3 Phase I (RJ)
In the first phase, we planned to assemble the prototype drone using most of the
sensors that we require for our final build. Before placing the components onto
the drone, we individually tested the components to ensure that they are not
defective. Once placed on the drone, we will ensure that the components are

 98

securely fastened, and that the basic drone is flyable. We expected the need to
develop additional mounts for the components as necessary during this stage.

Our primary goal for this phase is to make sure that we can have a standard
drone flying with the components that we selected. Simultaneously, we will begin
working on the computer vision algorithms and configuring the flow of data
between the sensors and the CPU. We will work on getting all the raw sensor
data and making sure that they are centrally available in the CPU. However, we
did not configure the drone to fly with autonomous functionality at this time. We
wanted to take this data and process it to match the obstacle course
requirements set out by our sponsor.

We planned establish a rudimentary system to utilize sensor data to control the
drone, and we will program basic autonomous functionality for the prototype
objects that were given to us. To do this, we will also create machine learning
models using a dataset of images taken of the objects in different lighting
conditions, at different angles, at different heights, and at different distances.

Building an algorithm using all of these data points will allow us to achieve better
performance. This allowed us to ensure that we assembled the circuitry correctly,
and that we know how to utilize the flight controller, transmitter, and receiver to
fly a basic drone. At the same time, working on the sensors and CPU allowed us
to prepare the drone for future autonomous functionality that will be implemented
in the next phase.

7.1.4 Phase II (RJ)
In the next phase, we planned to combine the basic drone with the autonomous
functionality. The drone will already be assembled with most of the components,
however, we will need to reattach some additional components that was
previously removed for development, such as the CPU and camera. The flight
controller will receive input commands directly from the CPU, and not the
transmitter/receiver that was manually controlled in Phase I. A significant portion
of time would be be spent interfacing sensor data with flight movement.

In this phase, we expected that our image recognition algorithm to have low
accuracy, but we are primarily interested in verifying that we can maintain control
of the drone. We will also implement and verify the flight control modes that were
outlined previously are functional. We will perform specific hardware and
software tests before we fly our drone. These tests are outlined below, and will
help us prevent failures which could damage our drone or cause injury to
someone. Once we verify that our drone and it’s components pass the the
specific hardware and software tests outlined below, we would individually test
each specific maneuver we expect the drone to be able to perform. For example,
the drone should be able to detect a ring and fly through it.

 99

In a separate event, the drone should be able to detect a pylon and fly through it.
Instead of testing both of those items successively, as the drone should be able
to perform during the competition, we will first see if the drone can individually
pass those tests. Then, we will test if the drone can fly between objects without
maneuvering in or around those objects. This will allow us to examine each
function separately, and help us identify points of failure that would otherwise be
hard to identify.

7.1.5 Phase III (RJ)
Our final phase would include fine tuning the autonomous drone for improved
performance, and to make sure that it can complete an obstacle course in
preparation for the competition at Lockheed Martin. We will follow the
performance testing guidelines we established as a way to focus on specific
features of the drone. We may need to purchase additional components if we find
that there is a significant deficiency that is preventing us from satisfying our
operational requirements.

Object detection is one aspect of the competition, however, we must determine
how the drone will fly towards the next object and the decisions it will require to
get there. Moreover, a major aspect of the competition will be the adversarial
landmines that threaten to bring down our drone. During this phase, we will
develop and implement defensive maneuvers to avoid being attacked by a
landmine. The reason why we are waiting until the last phase to do this is
because we first want to make sure that other features of the drone are
operational. Our primary consideration during the second round of the
competition will be to protect our drone from any attacks.

7.2 Software Development
The software development process is what we believe will take the longest to
accomplish due to the size and complexity of the necessary software. For this
reason, it will be important to decide upon how the software will be developed
ahead of time. In this section, we will discuss how we will organize our software
development to ensure efficient use of our time. (CJ)

7.2.1 Language Choice (CJ)
The choice of language choice will depend on the section of the software being
coded. This is because different parts of the software may require different
libraries or different levels of efficiency. There are two distinct
A large portion of the project will be made up of ROS nodes. ROS supports C++
and Python, so we had the choose between these two when deciding on what to
code the node in. Other portions of the code on the ground station could be
coded in another language, but to reduce the need to become familiar with other
languages, we will attempt to use languages other than above on the ground
station software unless we find it reasonably necessary.

 100

In order to understand what language we need to code each of our nodes in, we
will need to understand the tradeoffs for the languages. Python is an interpreted
language. This means that the code is executed at run time without need for
compilation. This means that with Python that it is sometimes hard to catch errors
before running the program. It also means that Python tends to run slower than a
compiled language like C++. Additionally, since the Python interpreter is what
manages memory and not the program, Python scripts can use up more memory
than is absolutely necessary. What Python loses in efficiency it makes up for in
user friendliness. The user does not have to manage memory, and most
operations are at a higher level, meaning that the same goal can be
accomplished with fewer lines. Also several members of the MAE team know
how to use Python, and this will help them contribute to the programming of the
project.

C++ is an object oriented language based on C. It is a language that requires the
programmer to manage the memory when creating data structures and objects.
Because of this, it can take several lines of code to implement what Python can
do in a single line. However, this enables the programmer to make memory
management more efficient. Another benefit that C++ has over Python is that it is
compiled to binary before operation. This enables it to run faster than Python
since the written code does not have to be interpreted at runtime.

Despite its need for memory management, C++ will be used where possible to
improve the speed at which our algorithms will run. This will reduce the time it
takes to run through loops during the AutoNav and Auto Maneuver autonomous
submodes. If we decide that using a python library will be necessary for a node
or that we feel that the node design would benefit significantly from people from
the MAE team working directly on the node, we will use Python.

For the microcontroller, we will utilize the Arduino IDE, which can support C and
C++. The Arduino IDE simplifies the coding process for the microcontroller
aspect of the project, as it contains helpful packages and debugging tools
specific to the Arduino platform.

7.3 Development Methodology
There are many software design models such as the Waterfall model,
Prototyping model, or Agile model. We have decided to go with Agile model as
with this method there are many iterations of software development and this
allows for change in design and requirements. A high-level plan of the features to
be implemented is suitable with the Agile method and it doesn’t require having a
detailed design beforehand. By using this method, the developer can design,
implement, and debug each module separately with each iteration.

 101

The Agile method is a good process to use for our team as we are working with a
large team composed of many engineering disciplines. There is a chance that we
will have to change our initial design proposal or change parts of the software we
develop so that we can integrate it with the modules the other members will be
developing. By using Agile, we will be able to rapidly develop software for various
parts of our system and we will have the option to change any parts if needed in
an efficient manner.

8.0 Project Prototype Testing Plan (RL)
This section will discuss the different testing phases that was planned to be
conducted during the developmental stages of the drone prototype. In order for
the project to be successful, thorough testing will need to be done to ensure
proper functionality of the different components of the drone. There are several
factors to consider while conducting the different testing phases as each
component will require its unique set of testing conditioning.

To ensure proper testing is being conducted, appropriate testing environments
will need to be established for both hardware testing and software testing.
Several testing runs will need to be conducted after each individual component
testing has been conducted to ensure all the components function accurately
when combined as a finished product. These testing phases are necessary to
work out the kinks and make adjustments to both the hardware and software
components before incorporating them into the final product. The project
prototype testing plan is separated into four main sections to adequately describe
each testing phase and selective environments established to perform the tests.

This project has various moving parts considering the size and complexibility of
the final product. We needed to prioritize different segments of the project in
order to make progress with our design. To do this, we plan to test our project in
three phases to divide our goals into manageable segments. These phases
emphasize the electrical and computer engineering aspects of this project,
however, it is likely that moving from the starter frame (from the DJI F450) to the
final frame may occur during phase three.

8.1 Hardware Testing (RL)
The final product requires several components to work together to ensure
successful completion of the project. Each hardware components have several
sub-components that will need to be considered to ensure all major components
function accurately. Communication between each sub-components and major
components will mainly be accomplished through coding, and coding based
platforms. Software testing and code testing environments will be discussed in
the later sections. This section will primarily be focused on the hardware testing.

 102

8.1.1 Hardware Test Environment
For testing each component of hardware to be used, several factors needed to
be considered. These factors will be determined based on the individual
component being tested. One of the major hardware components to be tested is
the power supply circuit. Power from the battery will be distributed to all electrical
components of the drone through the use of power distribution board. Each
electrical component will have its own individual power requirements.
Miscalculations in the amount of power to be supplied to each component may
lead to catastrophic failures and can cause components to overheat and burn
out. The power supply itself, which will be the lithium polymer battery, will not
require much thorough testing as the output of the power supply will be constant,
and the charge capacity and discharge rate will be fairly exact to the
manufacturers specifications. The only forms of testing that would be conducted
on the power supply are:

● Its ability to distribute a steady level of voltage
● The true running times at different levels of operations including durations

of operations at high power usage, lower power usage, and optimal power
usage.

● Total charging time of the battery with zero stored charge.

These basic tests for the battery will mostly be conducted in the laboratory. The
testing for operation duration will be made possible once all components are
connected and the drone is taken for a test flight. The operational duration test
for the battery will be the only test conducted in a field setting, and will be
conducted simultaneously with other tests that will also need to be conducted in
the same field setting environment.

Small passive components such as resistors, capacitors, switching regulators,
operational amplifiers, transformers, and other similar small electronic parts will
not be thoroughly tested as individual components. These parts will have
manufacturer specifications which will be used to determine the correct parts to
use. The only test that will be involved with the testing for these components is
using multimeters that are available in the laboratories to ensure the components
are not blown and functional. However, the circuits that will be built using these
components will be thoroughly tested and precise measurements will be taken as
the circuits built will be used as blueprints for ordering the appropriate PCBs
required for the project.

The PDB is one of the most essential circuits to be used for this project. Ensuring
accurate voltage levels are supplied to each electrical component is very
important for optimal operation of the drone as a whole. Power will be distributed
from the battery to the various components of the drone through the PCB circuits.

Simulation software, such as Eagle and Multisim, will first be used to design a
circuit that will be suitable for the various power distribution requirements. Once

 103

the simulated circuits are designed, the circuits will then be built on breadboards
and tested in a laboratory setting environment. Thorough measurements will be
taken to ensure optimal results are achieved. More details on the PCB circuits
and schematics are available in section 6.0.

Since the drone systems will be powered by a DC power source, and all the
components will require a DC power input, there will be no need for an AC to DC
power converter. This simplifies the design process for the PCBs by a bit as it
eliminates the need for an extra circuit.

The Jetson Nano will be used as the drone’s CPU. It is a small but efficient
computer for embedded applications, and with its smaller size, it was decided to
be the appropriate CPU to be used for the project. The Jetson Nano requires an
input voltage of 5 volts with a low-power consumption of 5 watts and a high-
power consumption of 10 watts. This CPU will be tested in several phases and
on different aspects and environmental conditions.

The software portion of the testing phase will be explained in later sections. The
CPU’s input power will be supplied through the PCB. The first phase of the
testing will be done in a laboratory setting environment where coding will be
implemented in the CPU and other essential components will be connected to it
via its USB ports. The components to be connected includes a depth perception
camera, a microphone, WIFI and radio telemetry receiver and transmitter, the
flight controller, and sensors.

Each component to be connected to the CPU will first be connected individually,
and the algorithm will be tested to check for proper functionality. The camera is
an important component that will be connected to the CPU. The CPU will need to
be able to process the images captured by the camera. Through coded
instructions, the CPU will then need to be able to identify the different images
sent by the camera.

The first thing the CPU will need to do is match the images received with the
instructions in the coding to differentiate if the objects captured in the images are
targets (obstacles) of interest. It will then need to place the image in one of the
categories of the targets of interest. The CPU will then need to match the target
identified with the set of maneuvering instructions for that particular target.

Training will need to be performed using the CPU in both a laboratory setting,
and field setting environment. The initial testing phase will be conducted in the
laboratory, where the CPU with the camera connected will be moved around the
stationary obstacles provided by Lockheed Martin, and checked to see if the
CPU is able to process the images and utilize the image recognition software
implementation. After thorough testing in the laboratory, the next phase of the
testing will require a field test where the CPU will be exposed to external

 104

extremities and influences, and the system will be checked to see if it is able to
perform as expected under those conditions.

The CPU and camera combination will also be tested for proper ability to
determine its distance for an identified obstacle, and adjust the distance as the
system’s location gets closer, or further, from the obstacles. The pair will be
tested on its ability to determine its height from ground level, the confidence level
of the approaching obstacle, and the time is will take for the system to reach the
obstacle.

Aside from identifying and differentiating between objects and obstacles, and the
type of obstacle, the CPU will also need to be able to detect mines set by the
“mine” team. For this the CPU will have sensors and infrared cameras connected
to it. The CPU will also be equipped with a set of coded instructions to perform
evasive maneuvers, in the event of fast approaching projectiles. Similar
environment to testing for the depth perception camera, will be utilized for testing
these components.

The CPU will also be tested with a microphone connected to it. The microphone
will be used to detect acoustic sound waves which will be used to mark
waypoints for the drone to land on and take off. The testing phase for this will be
conducted mostly in the laboratory. Testing this feature will prove to be
challenging in an external field setting due to noise interruptions of the
environment. A band-pass filter may be necessary to be implemented to weed
out the noise and detect the acoustic sound waves. A set of instructions will be
coded into the CPU to instruct the drone to land at the waypoint for a set amount
of time (5 seconds), then take off and carry on the flight path.

The CPU will also be equipped with a WIFI receiver/transmitter. This will be used
to send and receive data and instructions to and from a ground based computer.
The data collected and processed by the CPU, along with the live video feed will
be transmitted to the ground computer. The flight path mapping data will also be
transmitted to the ground computer where it will be stored to keep track of the
drone’s location, along with the locations of the obstacles detected, waypoints,
and the starting point.

It is essential to set up the appropriate testing environment for devices to be
tested. A set of the devices to be tested and the corresponding testing
environment for the respective devices is summarized in the list below:

● Battery: will be tested in a laboratory
● Printed circuit board (PCB): will be tested in the laboratory at different

stages. First stage will be conducted by connecting the CPU to the PCB.
Second stage will be conducted by connecting additional devices to the
PCB and the CPU. The final stage will be conducted with all the

 105

components connected to the PCB. The final stage testing will be
conducted in both a laboratory setting and a field setting.

● CPU (Jetson Nano): the CPU will be tested first in the laboratory with
individual components connected to it. Then it will be tested with all the
components connected together in both the laboratory and in the field
during the test flight of the prototype.

● The camera and the microphone: will be tested together with the CPU on
the same environmental setting.

● WIFI/Radio module: will be tested the same way as the camera and
microphone.

8.2 Hardware Specific Testing (RL)
Each hardware component will be tested using various equipment and
measuring devices. The components will be set up at different conditionings and
measurement data will be collected and recorded to check for optimal
functionality and operations. Hardware specific testing is important to ensure all
components are working individually as in junction with other connected
components. Performing such tests is essential for the project’s success.

8.2.1 Lithium Polymer Battery Testing (RL)
As mentioned in the previous section, the lithium polymer battery will not require
extensive testing. However, due to the nature of this type of battery, certain tests
will still need to be conducted to ensure its reliability and integrity. The battery will
first be physical checked to look for any structural abnormalities such as bumps,
cracks, and exposed wires and internal casings. Doing this will ensure the battery
does not pose any potential health and safety risks to anyone. It will then be fully
charged using a charger with manufacturer recommended settings. This step is
important due to the nature of lithium polymer (LiPo) batteries as this type of
batteries tend to explode and potentially cause fire and harmful chemical leakage
if not charged correctly or overcharged.

The battery’s temperature will also need to be closely monitored as overheating
may also lead to the risks mentioned above. For records purposes, the total
charging time of the battery will be tracked and recorded. This measurement may
be useful to help the team determine the need to acquire additional batteries.

During preliminary testing, the battery will be connected to a multimeter to
monitor the voltage levels delivered to the PCB and other components that will
be connected to it. The battery’s total time of operation will be monitored at
different levels of operation. These levels include running time will all
components connected and operating at full capacity with all components
operating at maximum output. Performing this test will help the team determine
the battery’s ability to operate and supply power to the whole system during the
entire duration of the flight course.

 106

8.2.2 Printed Circuit Board (RL and RJ)
Before placing orders for PCBs to be built, the circuits to be implemented will first
need to be designed and tested. This will be done using circuit simulation
software such as Multisim, Eagle, LT Spice, and the likes. The various circuits
needed for this project include voltage regulation circuits, amplifier circuits,
voltage to current conversion circuits. Once these circuits and designed and
simulated on the relevant software, they will then be built on breadboards, and
measurements will be taken to ensure the circuit will work for the project and be
able to generate the expected outcome. Once all necessary testing for the
circuits are completed, orders for the PCBs will be placed. Details for the PCB
designing and ordering can be found in section 6.0 of this report.

For the microcontroller aspect of the PCB, we will first use the Arduino Uno Rev3
development kit using the processor pins we designated for our schematic. Once
we test our prototype, we will order our PCB. We will flash the processor in order
to upload our code, and then we will test to make sure that our microcontroller
works as expected.

The completed PCB will be tested with each individual component of the drone’s
electrical system to ensure proper functionality. We will first connect our power
source to our PCB, and measure the output voltage. Once verified we are
receiving the correct output voltage for our sensors, we will connect one of the
main components to be tested using the PCB, which is the CPU via UART.

Once the CPU is found to be operating accurately with the PCB, other
components will be added to the system, one at a time, to check if the
components are able to operate together. This testing sequence will be repeated
until all components of the system is integrated and the system is found to be
working in harmony. Testing the PCB by slowly adding more peripherals will
allow us to understand the causes of failure, if they should occur.

8.2.3 Jetson Nano and component pairing (RL)
The Jetson Nano was chosen to be the CPU to be used for the autonomous
drone project. This component will be heavily tested in terms of both hardware
functionality and software compatibility. Most of the systems major components
will be connected to the CPU, and thus, it will be very important to endure this
device is programmed and tested correctly.

The first step of the testing will involve ensuring the CPU is receiving the
accurate level of voltage and current from the PCB needed for it to operate. The
CPU then be paired with other crucial components and its ability to process data
received from the paired devices will be observed. Adjustments will be performed
based on these observations and the pairs will be tested again. This process will
be repeated until the desired outcome is achieved from each pair being tested.

 107

The CPU will be programmed with a coding that will allow the system to spot
objects in images it receives from the camera. The camera will need to
connectable to the CPU, and its intake power will need to be monitored. Should
the CPU not be able to provide enough power to the camera, the camera will
need to be powered through the PCB. The team has chosen a camera with depth
perception capability. The sensor used in the camera for this feature will also
need to be power through the PCB as the CPU may not be able to provide
sufficient power to the sensor.

The CPU will process the objects it detects in the image received, and identify if
the objects detected are obstacles for interest or background objects that can be
ignored. The CPU will be programmed to identify three types of objects: rings,
single pylons, and double pylons. The CPU’s programming will also include a set
of instructions to perform obstacle specific maneuvering. The CPU will be tested
for its ability to identify the different types of obstacles and pair the respect set of
maneuvering instructions for each obstacle.

The CPU will also be programmed to land at waypoints marked by acoustic
sound waves. As such, the CPU will be paired with a microphone that will be able
to detect the acoustic signal. The same steps, to that for the camera, will be
taken for the microphone. Both connectivity and compatibility of the device will be
tested to obtain the desired outcome. The CPU will receive the acoustic signal
via the microphone and instruct the system to get into a set preprogrammed
proximity of the signal and land for a set time frame (5 seconds), and then takeoff
and continue with the course. The CPU will be tested with its ability to process
the signal and execute the set of instructions to perform the landing sequence.

The system will be programmed with a set of instructions to perform an
emergency stop and shutdown sequence as a safety feature to prevent injury or
damage to property. The command for the emergency shutdown will be entered
into the ground computer and transmitted via a wireless router to the WIFI
receiver onboard the drone’s system. Similar compatibility, power supply, and
connectivity tests will be performed for the WIFI module for the CPU.

The CPU will be tested in its ability to receive and process the command from the
WIFI module, and execute the set of instructions for the emergency stop
sequence. The emergency stop protocol is a primarily a three-step process once
the command is received via WIFI. The CPU will be checked to see if it instructs
the system to stop all lateral movements, which is the first step of the emergency
stop protocol.

For the next step, the CPU will send a command to the system’s flight controller
which will reduce power of the drone motors through the electronic speed
controller (ESC). This will cause the drone to slowly descend and perform a soft
landing. The third step of this process requires the CPU to detect the completion

 108

of the landing and shutdown all power to the system once on the ground. Testing
will be performed for all three steps of the emergency stop sequence.

8.2.4 Flight controller and electronic speed controller (ESC) (RL)
The flight controller and electronic speed controller (ESC) will be used to steer
the drone, as well as control the takeoff and landing of the drone. Although most
of the testing for the flight controller and the ESC will be performed by the
mechanical and aerospace engineer portion of the team, the electrical and
computer engineering portion of the team will test the power flow to these
components, as well as, the compatibility and connectivity of the components to
the drone’s CPU. We will test for ways to process signals sent to these
components for accurate maneuverability of the drone through the course.

All of the component testing will first be conducted in the laboratory. Typical
laboratory measurement equipment such as multimeters, function generator, and
oscilloscope will be used to collect data for the various circuits to be used. A
computer with an operating system that is compatible with the coding to be
implemented will be used to test the code and CPU processing capability of data
received from input devices (camera, microphone, WIFI module, etc.). The
project sponsors have provided sample obstacles that will be used on the final
course tryout. The team will use these sample obstacles for CPU training and
field testing the prototype.

8.3 Drone Software Testing (CJ)
Software testing is essential to ensuring that our drone operates properly and
safely. Ensuring that our programs work properly will prevent damage to other
objects, people, and the drone itself. The process of software testing will begin
with testing individual portions of the code, which in our case will be our software
nodes. After we have shown proper operations of each of the nodes, we will test
begin testing software as a whole during our software-in-loop testing phase.
Once our drone software has successfully passed both stages, the drone would
be tested as a whole with all of the sensors. Unfortunately due to the COVID19
pandemic, we were not able to dedicate much time to software testing.

8.3.1 Unit Testing Nodes
Unit testing of each of the software nodes would be carried out to ensure proper
operation. In order to test the nodes, unit testing modules will be programmed.
These testing modules will publish information to the inputs of the node being
tested. The node will then use that information to carry out its functions. Once the
node has published all information out to the subscribed nodes, the testing
module will then check to ensure that the published information was correct. If
information is not correct, the test is flagged as failed and the output data is
logged.

 109

These unit testing modules will be run by a shell script. The shell script will run
each of the nodes and the corresponding testing module. This shell script will
ensure that only one node and its corresponding testing module will be active at
the same time. This is so that other nodes that are subscribed to the input or
output topics of the node do not take received data and begin running. This unit
testing shell script provides us a simple way to quickly ensure that all nodes are
running as intended.

8.3.2 Software-in-the-Loop Testing
Software-in-the-loop (SITL) testing is designed to test how the computer system
as a whole operates without needing to observe the operation while the drone is
in flight. By doing SwIL testing before trying to fly the drone with the only unit
tested nodes, we reduce the risk of our drone crashing and breaking valuable
components and reduce the likelihood of someone becoming injured. Two
different SITL tests will need to occur to fully test our system. The first will be the
SITL of the drone & ground station software, and the second will be the SITL of
the Pixhawk.

For the SITL of the drone and ground station system, a testing module will
provide predetermined inputs into the entire system. The software will then run
as if this data was being received from the various sensors on the drone. As the
system runs, the testing module will log all data published to the ROS system.
The data will then be compared to the desired output of the system, and all
anomalies found will be noted. Once we are able to run tests simulating a flight
without incident, the software will be ready for flight testing.

For the SITL of the PixHawk, we will use an ArduPilot SITL program. This allows
a simulation of a drone to carry out commands in a virtual environment. In order
to ensure the commands given to the PixHawk by the control computer will not
cause the drone to crash, the simulated drone will be passed output data from
the drone and ground station SITL. If the simulated drone is able to operate and
navigate without issue, we know that the output commands from the SITL will
work properly.

8.3.3 Input Sensor Interface Testing
To ensure that our sensors properly interface with our software, we will need to
test that each software node is able to detect the sensor and publish the data to
the ROS. This will be done by connecting the sensor to the drone computer,
starting the responsible ROS node, and running a small program that prints out
each update from the sensor. This process will allow us to discover any
interfacing issues and resolve them.

8.3.4 Hardware-In-the-Loop Testing
Hardware-in-the-loop (HITL) testing is an option that we considered. HITL would
enable us to ensure that the drone computer and flight controller are capable of

 110

receiving data from the input sensors and that the drone and flight controller are
outputting the expected signals.

This form of testing, hardware is required to interface with each of the physical
inputs and outputs of the system, and a computer program on a seperate system
is responsible for sending signals simulating input along this hardware and for
receiving the signals. This is to ensure that the hardware can properly send and
receive electrical signals as data Though we believe that HITL testing would be
beneficial to our project, we believe that are time and budget constraints prevent
us from being able to set up such a system. The above testing procedures
should give us enough confidence to begin flight tests.

8.4 Wireless Testing (HS)

We needed verify our wireless communication systems because it will satisfy
Lockheed Martin’s requirements for the live video stream. Wireless testing will be
done solely on the Jetson Nano. To test for wireless connectivity, a video stream
will be conducted using the Jetson Nano and a web camera. The Jetson Nano
will be configured to broadcast a stream of the web camera footage over IP, and
a laptop connected to the same router that the Jetson Nano is connected to, will
be able to grab the stream from the designated IP address.

To achieve this, the Jetson Nano will first be linked to the WiFi router. Next, the
USB camera will be connected to the Jetson Nano, and will be selected via
command console and configured based on the webcam’s settings. Additional
settings and parameters will be designated for streaming. After the settings are
complete, the command will be sent to enable the video live stream of the
camera.

After the stream is enabled, the ground control station laptop connects to the
Jetson via secure shell (SSH) protocol using the program Putty. Using the Jetson
Nano’s IP address, the laptop will a web browser open with the address
containing the Jetson’s IP address. If the wireless connection is working, the
browser will display the stream from the web camera connected to the Jetson
Nano. If the wireless connection is not working, then video feed will not display
on the designated IP address. Design of test is outlined in Figure 38.

 111

Figure 38: Wireless Testing Diagram (HS)

8.5 Ground Station Manual Control Testing (HS)

Ground Station testing will make sure that the PX4 and the Pixhawk can
communicate with the ground station, enabling manual flight of the drone. To test
that the ground control station can successfully connect and control a drone, the
Pixhawk flight board, as well as a prototype drone or commercial off the shelf
drone will be needed. Additionally, a laptop with an Xbox 360 controller will also
be utilized.

Based on our original design, the system configuration will consist of the ground
station laptop running the QGroundControl software, and a ROS Joystick Node
on the laptop to use the Xbox 360 controller with QGroundControl.
QGroundControl will enable a connection with the Pixhawk flight board to
manually fly the drone using the gamepad controller. If both subsystems are
configured correctly, steady and responsive flight via manual control will be
established. Design of test is outlined in Figure 39.

 112

Figure 39: Ground Station Manual Control Testing Diagram (HS)

8.6 System Connectivity Prototype (HS)

To ensure that all the systems are linked and can function cohesively, a simple
prototype will be built to demonstrate each subsystem such as the ground control
station and the drone, in communication with one another. The prototype will
focus less on moving the drone and getting accurate feedback from the camera,
and rather focus on the wireless connectivity between the Jetson Nano’s Wi-Fi
module and the ground control station’s wireless router, and the ability to receive
output from the drone’s camera, and input from the Xbox 360 controller on the
ground control station.

The primary component that will be tested in our prototype is the Jetson Nano.
Other components in this prototype include a laptop, Wi-Fi Router, USB Wi-Fi
module for the Jetson Nano, and a web camera. Software used for this will
primarily consist of ROS nodes, and additional software to connect the laptop to
the Jetson Nano. Connection between the laptop and the Jetson Nano will be
done through serial connection, using a program such as Putty to initialize a
serial connection to send a serial command to the CPU via the router.

 113

The prototype would have the Jetson Nano linked with the ground control station
laptop via Wi-Fi, through the USB Wi-Fi module to the Wi-Fi Router. A key on the
laptop will be pressed and a serial command will be sent to the Jetson Nano,
which will turn on an LED connected to the Jetson Nano. Pressing the button
again will turn the LED off. Additionally, a web camera will be connected to the
Jetson Nano via USB, and will broadcast the video through the Wi-Fi Module,
and this camera stream will be accessed via IP address. The setup can be seen
in Figure 40. Having the LED functionality as well as the camera stream
functionality will ensure that it is possible to communicate both ways between the
ground control station and the drone.

Figure 40: System Connectivity Prototype Diagram (HS)

8.7 Sound Triangulation Prototypes (HS)

To test for accuracy of pinpointing the specified sound from the acoustic
waypoint, an initial and basic sound triangulation prototype using an array of
three microphones will be constructed. Tests will be run using this prototype to
tweak values to determine sound distance based on volume intensity, as well as
sound direction based on the differentials between the three microphones. To
test and verify the accuracy of this setup, the distance (between 0 and 5 meters)
and angle (between 0 and 180) will be printed on the screen of the CPU.

A second prototype consisting of 4 microphones will need to be constructed after
successful tests with 3 microphone array. This prototype will function similarly by
triangulating sound, but will have 4 simultaneous triangulations occuring to
provide a coordinate location relative to the center of the microphone array based
on the location of the sound. There will be a print out of the x-coordinates and y-
coordinates in meters of the sound relative to the origin, as well as a distance

 114

and angle (0 to 359) to the sound. An example scenario of this prototype can be
seen in Figure 41 below.

Figure 41: Sound Triangulation Prototype Example (HS)

8.8 Sound Channel Prototype (HS)

Filtering the sound of the drone will be key for locating the acoustic waypoint. To
ensure this capability is functional, a prototype will be setup using the Jetson
Nano connected to the ReSpeaker Mic Array v2.0. The mic array which is
connected to the cpu, will listen to the designated frequency that will be emitted
by the acoustic waypoint which will be played on a phone which will sit 10 feet
away from the microphone array. Additionally, a loud fan will be on and running
making as much noise as possible from 1 foot away from the microphone array
as seen in Figure 42.

Utilizing the AEC functions of the XMOS XVF-3000 in the ReSpeaker Mic Array
v2.0, two sound channels can be made from both the fan’s sound and the
phone’s sound. Both channels will be compared to the desired frequency, and
whichever channel sounds closest to the correct frequency will be designated as
the sound emitting device

 115

Figure 42: Diagram of sound channel prototype layout

8.9 Reliability and Performance Testing (RJ)
A major aspect of our project was include reliability and performance testing,
which are inherently related to each other. Increasing the performance of the
drone (such as the speed at which it flies) may decrease the reliability of the
drone being able to complete a mission. A mission is defined as being able to
maneuver around an identified obstacle from the course.

Moreover, there is a multiplier bonus for the number of missions that are
consecutively executed successfully.

When we begin prototyping our physical drone and algorithm, we will fly the
drone at a low speed to ensure that it can individually complete a mission. We
will repeat this process, however, we will modify the testing conditions such as
changing the starting angle of the drone in relation to the obstacle, or changing
the lighting conditions of the room. This will allow us to create a better dataset for
our autonomous functionality, and prepare us for the unknown environment that
our drone will experience during competition day. We will seek to achieve at least
90% reliability for each individual mission. The way this will be measured is by
measuring the number of successful missions out of a ten run trial. If the drone
successfully completes a mission ten out of ten times during our testing, then we
will increase the speed of the maneuver. If the drone is unable to meet this
threshold, we will reduce the speed of the drone until we can satisfy the 90%
threshold.

8.10 Adversarial Mine Avoidance Hardware (HS)

One of the obstacles our drone will need to traverse past is an adversarial mine
created by another senior design team. All that is known about the adversarial
mine is that it cannot contain any high velocity projectiles and it will be placed on
the floor between two obstacles on the course. Our drone will conduct two runs;
one without the adversarial mine and a second run with the mine present. The
adversarial mine can only attack the drone within a 3 foot diameter, and 10 foot
high cylinder of its origin as seen in Figure 43.

 116

Because the nature of the adversarial mine is unclear, our drone needs to be
able to withstand any potential dangers that could strike against it from the mine.
Possible attacks from the mine include wind gusts, a large net, or small soft body
projectiles. The mine is also limited by being placed on the ground; however,
they can employ any number of sensors to detect and track our drone.
Additionally, the mine team can create multiple mines that will all be placed
between two arbitrary obstacles on the course. Given these potential hazards to
the drone’s flight on the course, there are several additions to the drone that can
help mitigate a crash when the drone is under fire from the mine.

Figure 43: Adversarial mine area of effect diagram

8.10.1 Propeller Shrouds

Mentioned prior in the sound reduction section, the propeller shrouds around the
propellers can help to mitigate sound and prevent any object from colliding with
the propeller from its sides as seen in Figure 44. If the drone gets knocked out of
the air into another object, the drone might be able to recover because the
shroud allows for the drone to slide against walls without damaging the
propellers. If the mine uses projectiles, this will be helpful, however if the mine
uses air blasts to knock the drone out of the air, depending on the height of the
shroud, it might increase the drone’s overall surface area, which would allow for
the air blast to be more effective against the drone.

 117

Figure 44: Propeller Shrouds gliding against wall or obstacle (Top) and
deflecting projectiles (Bottom)

8.10.2 Safety Mesh

Another safety device that can be added to the drone is a wireframe designed
safety mesh made of plastic surrounding the entirety of the drone structure. This
will allow for the mesh to absorb the impact of any projectiles that hit the drone.
The downside for this addition would be the fact that it will increase the overall
size of the drone, allowing for it to be easier to hit, and make it harder for the
drone to pass through and around obstacles. An example mesh that can attach
to our drone can be seen below in Figure 45.

 118

Figure 45: Example safety mesh to surround the drone

Due to the change of requirements given by our sponsor, we did not pursue any
defensive strategies to protect our drone during the second round of the
competition.

9.0 Administrative Content (RJ)

9.1 Deliverables
For this project, we have several deliverables that we will produce over the two
semesters.

● Weekly Status Report (Lockheed Martin Requirement)
● SD1 Divide & Conquer (Senior Design Class)
● SD1 Initial Project Report (Senior Design Class)
● Preliminary Design Review Presentation (Lockheed Martin Requirement)
● SD2 CDR (Senior Design Class)
● SD2 Midterm Demo (Senior Design Class)
● Video Demo (Lockheed Martin and Senior Design Requirement)
● SD2 Final Project Report (Senior Design Class)
● Website

For our project sponsors and advisors, we had a weekly status report that we
must complete, including what was accomplished during the previous week and
what will be completed the following week. This document is shared with our
project advisors and sponsors the day before our weekly meeting. We also must
produce a presentation by Jan 2020 that includes details about the design and

 119

implementation of our drone. Finally, our sponsor and our class requires that we
submit a demo of our project.

The primary documents we must produce for the Senior Design class
requirements are the Divide & Conquer, the Initial Project Report, and the Final
Project Report. The Divide & Conquer is a preliminary document that outlines our
requirements and architectural plans. The Initial Project Report is our plan for
designing, building, and implementing our project, and it is due at the end of
Senior Design 1. The Final Project Report is due at the end of Senior Design 2,
and will outline everything we did to implement our project, including any
changes. We originally needed to prepare a posterboard, but due to the
COVID19 pandemic, that requirement was dropped. However, we still needed to
produce a website.

9.2 Milestone Discussion
An important aspect to ensure the success of our project is to divide our tasks
into smaller segments. This allows us to focus on smaller, achievable goals while
also moving us towards the completion of this project. Creating milestones also
helps our project sponsors and advisors know where This project is expected to
take two semesters to complete.

Table 11 outlines our project milestones and due dates for Senior Design I,
where we primarily hope to complete all of our research for the project. This
includes researching the technologies available to us, and deciding how we will
choose to implement our drone. These dates were also selected to meet the
UCF and Lockheed Martin requirement deadlines.

During the second semester, we were given to present our preliminary design to
the Lockheed Martin team, where we received feedback on our implementation.

 120

Table 11: Senior Design I Timeline

Milestone Completion
Goal

Divide & Conquer 1 9/20/19

Create detailed requirement list 9/29/19

Divide & Conquer 2 10/4/19

Drone CPU and/or Microcontroller Research Finished 10/11/19

Order CPU and/or Microcontroller for Prototyping 10/12/19

Order Drone Starter Kit 10/16/19

Begin Data Collection & Training 10/21/19

SD1 Documentation (30 pages) 10/21/19

SD1 Documentation (60 pages) 11/1/19

Finish Algorithm Training 11/4/19

SD1 Documentation (80 pages) 11/8/19

SD1 Documentation (100 pages) 11/15/19

SD1 Final Documentation 12/2/19

Table 12 below outlined our original plan for the second semester in the senior
design sequence. Senior Design 2 will primarily encompass building our physical
product and testing that it works for our missions. After the initial build, we expect
that most of our time will be spent tuning the algorithm to detect obstacles and to
navigate through the course autonomously. We found that in several instances,
we needed to redesign certain aspects of our drone as it not meeting the
performance requirements that we outlined earlier.

Though our initial build burned through most of our budget, we had leftover
funding that would allow us to make minor design changes as necessary.
Moreover, we will be able to modify a lot of operational functionality through our
code, and if the drone does not meet our performance requirements, it is
possible that those issues can be resolved through software solution.

 121

Table 12: Planned Senior Design II Timeline

Milestone Completion
Goal

Object Detection Model Training 1/6/20

Coding Modification and Simulation 1/9/20

Initial Power System Testing 1/10/20

Manual Mode Flight Accomplished 1/15/20

Preliminary Design Review Presentation 1/17/20

Land/Take-off Autonomous Submode is Completed 1/30/20

Emergency Stop (E-Stop) system Completed 2/7/20

Modified Program Simulation and Power System Recheck 1/22/20

Testing and Design Changes Phase 1 2/15/20

Laboratory Testing for Power System 2/18/20

Testing and Design Changes Phase 2 3/15/20

Final Build 4/15/20

SD2 Final Report 4/20/20

Website 4/20/20

Due to the COVID19 pandemic emerging during SD2, the original timeline was
severely affected. The results of our project are outlined in section 10.

9.3 Initial Budget and Finance Discussion
Lockheed Martin, the project sponsor customer, provided a total of $1650 dollars
to our group for our autonomous drone. $1100 of that total amount is allocated
towards the materials and parts needed for the final product. The additional $550
is allocated for prototyping and testing. While we are able to spend a total of
$1650, the total cost of the drone cannot be $1650; it must be $1100 or less. This
budget constraint provides an engineering constraint for us, requiring us to
carefully select parts that we know will be subtracted out of the $1100 build
budget. For example, though the CPU, camera, and battery are amongst the

 122

most expensive items in our build, we were confident that they will be used in our
final product.

For this reason, we were significantly under budget at the beginning of
prototyping. This provided wiggle room in case certain parts turn out to be more
expensive than expected, or replacements are needed. Replacement parts might
be needed if we damage them during testing, or if we find out that they provide
poor performance that is not adequate for our mission. This allowed for part of
the budget to go into research and experimentation with potential sensors,
propellers, drone frames, CPUs, and flight boards. Below in Table 13 was our
estimated budget for this project.

Table 13: Estimated Budget

Part Estimated Price

CM-2206/17-V2 MULTIROTOR MOTOR (4) $91.96 ($22.99 ea.)

HQ Prop 5x3 Propellers (4) $1.96 ($0.49 ea.)

3D Printed PETG Drone Body $7.59

Intel RealSense D435 Depth Camera $179.00

NVIDIA Jetson Nano $99.00

Geekworm Jetson Nano WiFi $18.99

3DR Radio Telemetry Air and Ground Data Transmit Module $22.99

Cobra 30A Opto Multirotor ESC (4) $111.96 ($27.99 ea.)

HC-SR04 Ultrasonic Range Sensor (4) $15.80 ($3.95 ea.)

Holybro PX4FLOW Optical Flow Camera $109.99

Venom 4s 30c Battery $59.99

ReSpeaker Mic Array v2.0 $64.99

Custom PCB ~$10.00

Electrical Components (transistors, resistors, capacitors, ICs,
etc)

~$10.00

TOTAL $804.22

 123

9.4 Advisors, Meetings, and Communications
This project consists of a multidisciplinary team which includes two electrical
engineering (Rishi Jain and Ryan Lucas), two computer engineering (Caleb
Jones and Hamza Siddiqui), two mechanical engineering (Moneer Hajiazimi and
Chad Bement), and two aerospace engineering (Chistopher Rehberg and Joseph
Rice) students.

Additionally, our sponsor has given us four advisors that are available to assist
us when needed. Two of the advisors, Jonathan Tucker and Andrew Kirk, act in
the role of the “customer”. They are our target audience for whom we are building
the drone for. Our overall team lead, Christopher, has a weekly call with them to
provide status updates and to clarify any customer requirements. Two other
advisors, Aaron Phu and George Loubimov, act as our project mentors. They are
resources for us to utilize during the research, construction, and implementation
of our drone. Finally, we have access to our Senior Design class professors, Dr.
Richie and Dr. Wei, that we can contact for specific electrical and computer
engineering questions, as well as general concerns relating to the Senior Design
courses.

All group members and our project mentors meet weekly to discuss project
progress, roadblocks, and major decisions that require approval from both
subteams. Additionally, the MAE and ECE subteams frequently break off into
smaller groups in order to tackle specific goals.

All group members and project mentors have access to a communication
platform called Slack, which allows us to communicate and easily share
information with each other. Moreover, most joint assignments are hosted on
Google Drive, allowing group members to easily contribute and view the overall
progress of a specific goal.

9.5 Parts Acquisition
Since our project is being financed by Lockheed Martin, there is a specific
process for acquiring parts. First, we had to decide as an entire team which parts
we are going to order. The reason is because most systems are interconnected
with each other or may impact the weight/aerodynamics of the drone. Once we
reach unanimous agreement on the parts, our team leader will fill out an MAE
department order form. Once the form submitted, we will have to inform our
project advisor to review the order and approve it. If the advisor disagrees with
something decided on, then we will have to reevaluate whether we should pursue
a different part. If the advisor agrees, then the parts will be ordered and we will
receive an email confirmation.

We also have limited access to parts used on previous Lockheed Martin
sponsored projects. We received a PX4flow, a Pixhawk-variant flight controller,
and a Nvidia Tegra K1 CPU that we could use for our project. While we did not

 124

have plans to utilize these components since they do not fit within our original
architectural design plan, it gives the opportunity to test other components if we
find that our chosen components fall short of our performance requirements.

10.0 Project Results, Major Changes, and
Future Considerations
Although previous sections of this paper outline our design considerations for the
original scope of the project, we experienced varying levels of success and
needed to modify some of our design plans. Moreover, the emergence of the
COVID19 pandemic and changing requirements from our sponsor abruptly
altered our focus in certain areas of the project. This section summarizes: major
changes (both completed and pending) made to the software and hardware of
the drone; the functionality achieved by our final product; and our final costs.

10.1 Hardware

10.1.1 Drone Frame
For the drone frame, we were originally planning on developing anti-mine
hardware (such as propeller guards and a mesh net) for use in the competition.
However, since the competition was cancelled, this was no longer a priority. In
the end, our multidisciplinary team created an in-house frame that was able to
house all of our components.

10.1.2 Optical Flow/Height Sensor
Although we were originally planning on using the PX4Flow Optical Flow sensor,
we were not able to stabilize the drone using position hold, which would keep a
drone stationary in the air. We replaced the Optical Flow sensor with a HereFlow
Optical Flow/Lidar sensor due to its increased vertical range. However, we only
found modest improvements in its ability to perform in the outdoors. Indoors, the
HereFlow seems to be stable but we were unable to extensively test this due to
lack of access to Lockheed Martin’s drone facility and stay-at-home orders
implemented throughout the state.

10.1.3 Microcontroller/PCB
We successfully designed and tested a schematic for our PCB to manage
ultrasonic range sensors to convey distance measurements to objects. Although
the fabricated PCB was functional, it experienced some signal interference inside
the board making two of the sensor measurements unreliable. We were not able
to properly debug this issue due to the lack of access to the senior design lab. In
a future iteration of the PCB, we would also include a logic level converter built
into the board to reduce the profile of components on the drone.

 125

10.1.4 Power Distribution
Our power distribution board was rated to support 5V @ 6A, however, we
experienced intermittent power failures where our Jetson Nano would shut off
during high load. We were not able to debug this issue in the lab environment
due to campus closures, but as a temporary solution, we were able to manually
set the Jetson Nano into a reduced power mode (5W). Although computing
performance was reduced, the computer was able to remain powered on and we
were able to demonstrate a proof of concept for our project. This could be easily
remedied by acquiring a replacement voltage regulator.

10.1.5 Electronic Speed Controllers
The original (Cobra) ESCs that we selected for our project were compatible and
provided acceptable performance in our initial testing; however, we found that
one of them was nonoperational. We were not able to source Cobra ESCs from
the internet in a timely fashion, so we elected to buy DSHOT ESCs locally.
Instead of using a PWM signal to drive the motors, the new ESCs were digital
and provided better performance in terms of latency.

10.2 Software
We were able to successfully build our dataset and train an image recognition
model. An example of our object detection is shown in Figure 46. Additionally, we
were able to extract sound measurements to guide our drone.

Figure 46: Custom Dataset To Detect Rings and Pylons

 126

Our original intention was to use ROS as a basis for all of the software. While it
worked well to extract image information and manage other sensors, we had
difficulty using ROS to control the flight controller using the MAVLINK protocol. In
our attempts to debug our problem, we stumbled upon a framework called
DroneKit, which we used to send commands to our flight controller. DroneKit
python library allowed us to easily write programs to direct the drone based on
inputs we defined. Therefore, our project uses both ROS and DroneKit, rather
than just the former.

10.3 Overall Drone Functionality
Our completed drone is shown below in Figure 47.

Figure 47: Fully assembled drone

We were able to implement object detection and tracking, navigation using sound
triangulation, rudimentary autonomous flight, and a live video datafeed.

Please refer to the video demo to view the drone in operation.

10.3 Final Cost
Due to the changes outlined above, the final assembled cost of our drone had
changed. The bill of materials was cheaper for the final build was cheaper than
our prototype build, primarily due to the cheaper ESCs and HereFlow sensor.
Table 14 displays the components and cost of our final product that we would
present if competing at Lockheed Martin. However in reality, some components
such as the Pixhawk were free to us.

 127

Table 14: Cost of Final Drone Build

 Component Name
Unit
Cost Quantity Cost

Jetson Power Cable Adafruit 5V 4A Supply $14.95 1 $14.95

Battery Venom 4s 30c 3200mah14.8V LiPo battery $59.99 1 $59.99

Drone Wifi Module Geekworm NVIDIA Jetson Nano Wi-Fi Adapter $16.79 1 $16.79
Companion
Computer NVIDIA Jetson Nano Developer Kit $99.00 1 $99.00

Flight Controller ReadyToSky Pixhawk $74.99 1 $74.99

Optical Flow/Lidar HereFlow Optical Flow/Lidar Sensor $49.99 1 $49.99
Power Distribution
Board PDB XT60 Matek Power Distribution Board $8.49 1 $8.49

ESCs Spedix GS30 32bit DShot 1200 30A ESC $12.95 4 $51.80

Propellers HQ Prop 5x3 Propellor (Black) (4) $0.49 4 $1.96

PCB Custom Microcontroller BOM $9.40 1 $9.40

Ultrasonic Sensors HC-SR04 $3.95 4 $15.80

Motors CM-2206/17-V2 MULTIROTOR MOTOR KV=2400 $22.99 4 $91.96

Microphone ReSpeaker Mic Array v2.0 $64.00 1 $64.00

Mounting
Frame, Double Sided Tape, M3 Nuts/Bolts/Standoffs,
Cable Ties, Battery Clip $26.71 1 $26.71

SD Card MicoSDXC $19.49 1 $19.49

Depth Camera Intel RealSense D435 $177 1 $177.00

 Total: $782.32

Table 15 outlines the cost spent strictly on prototyping, in other words, parts we
received but did not include in the final build.

Table 15: Final Prototyping Costs

 Component Name Unit Cost Quantity Cost

Optical flow camera PX4 Flow (Donated) $0 1 $0

Electronic Speed
Controller

Cobra MR30 $27.99 4 $111.96

Miscellaneous PCB
Components

PCB Prototype and Mouser Components $27.78 1 $27.78

PPM Encoder ShareGoo 8CH PPM Encoder & I2C Splitter $13.99 1 $13.99

 Total: $153.73

 128

11.0 Summary

We were able to demonstrate a competent design for an autonomous aerial
drone. Although we consider some of the performance of our drone to be
“unpolished” compared to our original expectations, we were severely impacted
by the COVID19 pandemic in our ability to order parts due to the university
closure, congregate as a team to debug issues due to the stay-at-home orders,
test parts due to the closure of the ECE lab, and to test fly our drone in an
appropriate environment as Lockheed Martin’s drone facility became
unexpectedly unavailable to us. Nevertheless, we were able to work in a
multidisciplinary team in order to deliver a functional autonomous drone which
serves as a proof of concept for our design methodology. We developed a
greater understanding for the importance of research, collaboration and project
management in an ambitious project such as this.

 A

12.0 Appendices

12.1 Bibliography

[1] A Short History of Unmanned Aerial Vehicles

https://consortiq.com/media-centre/blog/short-history-unmanned-aerial-
vehicles-uavs

[2] ArduPilot TX1-PixHawk Interface

http://ardupilot.org/dev/docs/companion-computer-nvidia-
tx1.html#companion-computer-nvidia-tx1
Used info licensed under Creative Commons Attribution-ShareAlike 3.0
Unported

[3] California RoHS

https://dtsc.ca.gov/restrictions-on-the-use-of-certain-hazardous-
substances-rohs-in-electronic-devices/

[4] Choosing A Ground Station
http://ardupilot.org/copter/docs/common-choosing-a-ground-station.html

[5] Coding Standards and Guidelines
https://www.geeksforgeeks.org/coding-standards-and-guidelines/

[6] CPU Performance Comparison of OpenCV and other Deep Learning
frameworks by Satya Mallick
https://www.learnopencv.com/cpu-performance-comparison-of-opencv-
and-other-deep-learning-frameworks/

[7] CUI INC Power Supply Safety Standards, Agencies, and Marks
https://www.cui.com/catalog/resource/power-supply-safety-standards-
agencies-and-marks.pdf

[8] Drones and Unmanned Aerial Vehicles (UAV) Certification (UL3030)

https://www.ul.com/offerings/drones-and-unmanned-aerial-vehicle-uav-
certification

[9] Electronic Speed Controller (ESC) Calibration
http://ardupilot.org/copter/docs/esc-calibration.html

[10] Ethical Issues With Use of Drone Aircraft

https://csiflabs.cs.ucdavis.edu/~ssdavis/188/Ethical%20Issues%20with%2
0use%20of%20Drone%20Aircraft.pdf

 B

[11] How to connect the power system (ESC, BEC and power board) in your
multirotor/quadcopter by Painless360
https://www.youtube.com/watch?v=AIQOzFlLfJg

[12] How to install RealSense ROS node on Jetson Nano (recent as October

2019)
https://github.com/JetsonHacksNano/installRealSenseROS

[13] IEEE Standards Association
https://standards.ieee.org/project/2025_1.html

[14] Intel D400 Datasheet
https://www.mouser.com/pdfdocs/Intel_D400_Series_Datasheet.pdf

[15] Intel RealSense D400 Series Cameras Calibration
https://dev.intelrealsense.com/docs/intel-realsensetm-d400-series-
calibration-tools-user-guide

[16] MicLoc Sound Detection
http://ruralhacker.blogspot.com/p/micloc.html

[17] NVIDIA Trail Drone

https://arxiv.org/pdf/1705.02550.pdf

[18] Raspberry Pi 4 vs Jetson Nano Machine Learning Benchmarking:

https://www.hackster.io/news/benchmarking-machine-learning-on-the-
new-raspberry-pi-4-model-b-88db9304ce4

[19] RealSense ROS node
https://github.com/IntelRealSense/realsense-ros#step-3-install-intel-
realsense-ros-from-sources
Licensed under Apache License 2.0

[20] Recreational Flyers FAA
https://www.faa.gov/uas/recreational_fliers/

[21] Response from Intel confirming most users are able to use RealSense

ROS Node with ROS Melodic
https://forums.intel.com/s/question/0D50P00004FD93E/can-i-use-my-intel-
realsense-d435-with-ros-melodic-for-ubuntu-18042?language=en_US

[22] ROS Concepts (includes figure)

http://wiki.ros.org/ROS/Concepts
Wiki is licensed under Creative Commons Attribution 3.0

 C

[23] Sensor Setup (Ardupilot)
https://docs.qgroundcontrol.com/en/SetupView/sensors_ardupilot.html

[24] The History and Basics of IPC Standards

https://www.allaboutcircuits.com/news/ipc-standards-the-official-
standards-for-
pcbs/##targetText=IPC%20standards%20are%20the%20electronics,asse
mbly%20(see%20Figure%201).

[25] The History of Drones
https://www.dronethusiast.com/history-of-drones/

12.2 Copyright Permissions

[A] UL Permission

 D

[B] IPC Permission

[C] Texas Instruments Permission

 E

[D] Painless360 Permission

[E] Intel Permission

